BAL BHARATI PUBLIC SCHOOL, PITAMPURA

Class -9 Mathematics
TOPIC: SURFACE AREAS AND VOLUMES (part 3)

Week: $14^{\text {th }}$ Dec to $18^{\text {th }}$ Dec
Number of blocks: 4
Subtopics:

- Surface area of cone
- Surface area of a sphere
- Surface area of hemisphere

NOTE- Students can download the NCERT textbook using the following link: -http://ncert.nic.in/textbook/textbook.htm?hemh1=0-16

Learning Outcomes:
Each student will be able to:

- Visualise a cone in its 2-D form in order to calculate the surface area.
- Visualise a sphere in order to calculate surface area.

Teaching Aids Used: Presentation by screen sharing, Digital Board, White-board and Marker, MS- Word You tube videos, Quizlet, Kahoot

LESSON DEVELOPMENT

BLOCK 1

Students will be asked to give examples of conical objects from day to day life.

Now surface area of Right circular cone will be introduced

The base is a simple circle and we know that area of a circle is given as:

Area of a circle $=\pi r^{2}$

Where r is the base radius of the cone
Area of the curved surface:
Now if open the curved top and cut into small pieces, so that each cut portion is a small triangle, whose height is the slant height / of the cone.

Now the area of each triangle $=1 / 2 \times$ base of each triangle $\times 1$.
\therefore Area of the curved surface $=$ sum of the areas of all the triangles

$$
\begin{aligned}
& \quad=\frac{1}{2} \times b_{1} \times l+\frac{1}{2} \times b_{2} \times l+\frac{1}{2} \times b_{3} \times l+\ldots \ldots \ldots+\frac{1}{2} \times b_{n} \times 1 \\
& =\frac{1}{2} l\left(b_{1}+b_{2}+b_{3}+\ldots \ldots+b_{n}\right) \\
& =\frac{1}{2} l(\text { curvedsurface })
\end{aligned}
$$

From the figure, we know that, the curved surface is equivalent to the perimeter of the base of the cone.

The circumference of the base of the cone $=2 \pi r$

\therefore Area of the curved surface $=1 / 2 \times 1 \times 2 \pi r$

Area of the curved surface= $\pi r l$

Total Surface Area of a Cone $=$ Area of the circular base + Area of the curved surface

Total Surface Area of a Cone $=\pi r^{2}+\pi r \mid$

s
Total surface area of a cone $=\pi r(1+r)$

Following questions will be discussed during class:

Find the total surface area of a cone, if its slant height is 21 m and diameter of its base is 24 m .

Solution:
Slant height $(I)=21 \mathrm{~m}$

Diameter of base $=24 \mathrm{~m}$
\therefore Radius of base $(r)=\frac{24}{2} m=12 \mathrm{~m}$
\therefore Total surface area of the cone $=\pi r(l+r)$

$$
\begin{aligned}
& =\frac{22}{7} \times 12 \times(21+12) \\
& =\frac{22}{7} \times 12 \times 33=\frac{8712}{7} \\
& =1244 \frac{4}{7} \mathrm{~m}^{2} .
\end{aligned}
$$

Question:

Curved surface area of a cone is $308 \mathrm{~cm}^{2}$ and its slant height is 14 cm . Find
(i) radius of the base and
(ii) Total surface area of the cone.

Solution:
Curved surface area of cone $=308 \mathrm{~cm}^{2}$
$\Rightarrow \pi r l=308$
$\Rightarrow \frac{22}{7} \times r \times 14=308$
$\Rightarrow r=\frac{308 \times 7}{14 \times 22}$
$\Rightarrow r=7 \mathrm{~cm}$
(ii) Total surface area of the cone
$=$ Curved surface area + Area of circular base
$=308+\pi r^{2}$
$=308+\frac{22}{7} \times(7)^{2}$
$=462 \mathrm{~cm}^{2}$

Question:

What length of tarpaulin 3 m wide will be required to make conical tent of height 8 m and base radius 6 m ? Assume that the extra length of material that will be required for stitching margins and wastage in cutting is approximately 20 cm (use $\pi=3.14$).

Solution:

For conical tent
Given,
$\mathrm{h}=8 \mathrm{~m}, \mathrm{r}=6 \mathrm{~m}$
$\therefore \mathrm{I}=\sqrt{\mathrm{r}^{2}+\mathrm{h}^{2}}$

$$
=\sqrt{(6)^{2}+(8)^{2}}=\sqrt{36+64}=\sqrt{100}=10 \mathrm{~m}
$$

\therefore Width surface area $=\pi r \mathrm{II}=3.14 \times 6 \times 10=188.4 \mathrm{~m}^{2}$

Width of tarpaulin $=3 \mathrm{~m}$
\therefore Length of tarpaulin $=\frac{188.4}{3}=62.8 \mathrm{~m}$
Extra length of the material required $=20 \mathrm{~cm}=0.2 \mathrm{~m}$
\therefore Actual length of tarpaulin required $=62.8 \mathrm{~m}+0.2 \mathrm{~m}=63 \mathrm{~m}$.

Question:

The slant height and base diameter of a conical tomb are 25 m and 14 m respectively. Find the cost of white - washing its curved surface at the rate of Rs. 210 per $100 \mathrm{~m}^{2}$.

Solution:

Slant height $(!)=25 \mathrm{~m}$

Base diameter $=14 \mathrm{~m}$
\therefore Base radius $(r)=\frac{14}{2} m=7 \mathrm{~m}$
\therefore Curved surface area of the tomb $=\pi r /=\frac{22}{7} \times 7 \times 25=550 \mathrm{~m}^{2}$
\therefore Cost of white-washing the curved surface of the tomb at the rate of Rs.
210 per $100 \mathrm{~m}^{2}$

$$
=\text { Rs. } \frac{210}{100} \times 550=\text { Rs. } 1155 .
$$

Practice Question 1:

A conical tent is 10 m high and the radius of its base is 24 m . Find (i) Slant height of the tent.
(ii) Cost of the canvas required to make the tent, if the cost of $1 \mathrm{~m}^{2}$ canvas is ₹ 70 .

Q2.

A Joker's cap is in the form of a right circular cone of base radius 7 cm and height 24 cm . Find the area of the sheet required to make 10 such caps.

PRACTICE QUESTIONS:

1. Find the volume of cone of radius $r / 2$ and height ' 2 h '.
2. Find the capacity in litres of a conical vessel having height 8 cm and slant height 10 cm .
3. A right angled $A A B C$ with sides $3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 5 cm is revolved about the fixed side of 4 cm . find the volume of the solid generated. Also, find the total surface area of the solid.

LESSON DEVELOPMENT

Block 2:

Recapitulation of concept taught on first day and following question will be discussed:

Question:

A bus stop is barricaded from the remaining part of the road, by using 50 hollow cones made of recycled cardboard. Each cone has a base diameter of 40 cm and height 1 m . If the outer side of each of the cones is to be painted and the cost of painting is Rs. 12 per m^{2}, What will be the cost of painting all these cones? (use $\pi=3.14$ and take $\sqrt{1.04}=1.02$).

Solution:

Given, Base diameter of the cone $=40 \mathrm{~cm}$
\therefore Base radius $(\mathrm{r})=\frac{40}{2} \mathrm{~cm}=20 \mathrm{~cm}=\frac{20}{100} \mathrm{~m}=0.2 \mathrm{~m}$
Height (h) $=/ \mathrm{m}$
$\therefore I=\sqrt{\mathrm{r}^{2}+\mathrm{h}^{2}}=\sqrt{(0.2)^{2}+(1)^{2}}=\sqrt{0.04+1}=\sqrt{1.04}=1.02 \mathrm{~m}$ (approximately).
\therefore Curved surface area $=\pi \mathrm{rl}=3.14 \times 0.2 \times 1.02=0.64056 \mathrm{~m}^{2}$
\therefore Curved surface area of 50 cones $=0.64056 \times 50 \mathrm{~m}^{2}=32.028 \mathrm{~m}^{2}$
\therefore Cost of painting all these cones $=32.028 \times 12=384.336=$ Rs. 384.34 (approximately).

Following images will be shown to children and name of its shape will be asked:

After discussions, Surface area of Sphere will be introduced.

Surface Area of a Sphere

If we cut sphere from the center, we get Hemisphere

Following questions will be discussed during class:

QUESTION:

Find the surface area of a sphere of radius: (i) 10.5 cm (ii) 5.6 cm (iii) 14 cm

Solution:
(i) $r=10.5 \mathrm{~cm} \therefore$ Surface area $=4 \pi r^{2}=4 \times \frac{22}{7} \times(10.5)^{2}=1386 \mathrm{~cm}^{2}$.
(ii) $\mathrm{r}=5.6 \mathrm{~cm}$
\therefore Surface area $=4 \pi r^{2}=4 \times \frac{22}{7} \times(5.6)^{2}=394.24 \mathrm{~cm}^{2}$.
(iii) $\mathrm{r}=14 \mathrm{~cm}$
\therefore Surface area $=4 \pi r^{2}=4 \times \frac{22}{7} \times(14)^{2}=2464 \mathrm{~cm}^{2}$.

QUESTION:

Find the surface area of a sphere of diameter: (i) 14 cm (ii) 21 cm (iii) 3.5 m

Solution:
(i) Diameter - 14 cm
\therefore Radius $(\mathrm{r})=\frac{14}{2} \mathrm{~cm}=7 \mathrm{~cm}$
\therefore Surface area $=4 \pi \mathrm{r}^{2}=4 \times \frac{22}{7} \times(7)^{2}=616 \mathrm{~cm}^{2}$.
(ii) Diameter $=21 \mathrm{~cm}$
\therefore Radius (r) $=\frac{21}{2} \mathrm{~cm}$
\therefore Surface area $=4 \pi r^{2}=4 \times \frac{22}{7} \times\left(\frac{21}{2}\right)^{2}=1386 \mathrm{~cm}^{2}$.
(iii) Diameter $=3.5 \mathrm{~cm}$
\therefore Radius $(r)=\frac{3.5}{2} \mathrm{~cm}=1.75 \mathrm{~cm}$
\therefore Surface area $=\pi r^{2}=4 \times \frac{22}{7} \times(1.75)^{2}=38.5 \mathrm{~cm}^{2}$.

QUESTION:

The radius of a spherical balloon increases from 7 cm to 14 cm as air is being pumped into it. Find the ratio of surface areas of the balloon in the two cases.

Solution:

Case I. $\mathrm{r}=7 \mathrm{~cm}$

Surface area $=4 \pi r^{2}=4 \times \frac{22}{7} \times(7)^{2}=616 \mathrm{~cm}^{2}$.
Case II. r $=14 \mathrm{~cm}$
\therefore Surface area $=4 \pi r^{2}=4 \times \frac{22}{7} \times(14)^{2}=2464 \mathrm{~cm}^{2}$
\therefore Ratio of surface areas of the balloon $=616: 2464$

$$
=\frac{616}{2464}=\frac{1}{4}=1: 4
$$

PRACTICE QUESTIONS:

1. A shot-put is a metallic sphere of radius 4.9 cm . If the density of the metal is 7.8 $\mathrm{g} / \mathrm{cm}^{3}$. Find the mass of the shot-put.
2. A spherical ball is divided into two equal halves. If the curved surface area of each half is $56.57 \mathrm{~cm}^{2}$, find the volume of the spherical ball. [use $\pi=3.14$]

LESSON DEVELOPMENT

Block 3:

Recapitulation of concept taught on previous day and following question will be discussed:

QUESTION:

A hemispherical bowl made of brass has inner diameter 10.5 cm . Find the cost of tin-plating it on the inside at the rate of Rs. 16 per $100 \mathrm{~cm}^{2}$.

Solution:

Inner diameter $=10.5 \mathrm{~cm}$
\therefore Inner radius $(r)=\frac{10.5}{2} \mathrm{~cm}=5.25 \mathrm{~cm}$
\therefore Inner surface area $=2 \pi r^{2}=2 \times \frac{22}{7} \times(5.25)^{2}=173.25 \mathrm{~cm}^{2}$
\therefore Cost of tin-plating at the rate of Rs. 16 per $100 \mathrm{~cm}^{2}$

$$
=173.25 \times \frac{16}{100}=\text { Rs. } 27.72
$$

QUESTION:

Find the radius of a sphere whose surface area is $154 \mathrm{~cm}^{2}$.

Solution:

Let the radius of the sphere be rcm .
Surface area $=154 \mathrm{~cm}^{2}$
$\Rightarrow 4 \pi r^{2}=154$
$\Rightarrow 4 \times \frac{22}{7} \times \mathrm{r}^{2}=154$
$\Rightarrow r^{2}=\frac{154 \times 7}{4 \times 22}$
$\Rightarrow r^{2}=\frac{49}{4}$
$\Rightarrow r=\sqrt{\frac{49}{4}} \Rightarrow r=\frac{7}{2}=3.5 \mathrm{~cm}$
Hence the radius of the sphere is 3.5 cm .

QUESTION:

The diameter of the moon is approximately one fourth of the diameter of the earth. Find the ratio of their surface areas.

Solution:

Let the diameter of the earth be 2 r .

Then diameter of the moon $=\frac{1}{4}(2 r)=\frac{r}{2}$
\therefore Radius of the earth $=\frac{2 r}{2}=r$
and, Radius of the moon $=\frac{1}{2}\left(\frac{r}{2}\right)=\frac{r}{4}$
\therefore Surface area of the earth $=4 \pi \mathrm{r}^{2}$
and, Surface area of the moon $=4 \pi\left(\frac{r}{4}\right)^{2}=\frac{1}{4} \pi r^{2}$

Ratio of their surface areas $=\frac{\text { Surface area of the moon }}{\text { Surface area of the earth }}$

$$
=\frac{\frac{1}{4} \pi^{2}}{4 \pi^{2}}=\frac{1}{16}
$$

\therefore Ratio of their surface areas $=1: 16$

QUESTION:

A hemispherical bowl is made of steel, 0.25 cm thick. The inner radius of the bowl is 5 cm . Find the outer curved surface area of the bowl.

Solution:

Inner radius of the bowl $=5 \mathrm{~cm}$
Thickness of steel $=0.25 \mathrm{~cm}$
\therefore Outer radius of the bowl $=5+0.25=5.25 \mathrm{~cm}$

Outer curved surface area of bowl $=2 \pi r^{2}$
$=2 \times 22 / 7 \times 5.25 \times 5.25$
$=173.25 \mathrm{~cm}^{2}$

QUESTION:

A right circular cylinder just encloses a sphere of radius r. Find
(i) surface area of the sphere
(ii) curved surface area of the cylinder
(iii) ratio of the areas obtained in (i) and (ii).

Solution:
(i) Surface area of the sphere $=4 \pi r^{2}$
(ii) For cylinder

Radius of the base $=r$
Height $=2 r$
\therefore Curved surface area of the cylinder $=2 \pi(r)(2 r)=4 \pi r^{2}$
(iii) Ratio of the areas obtained in (i) and (ii) $=\frac{\text { Surface area of the sphere }}{\text { Curved surface area of the cylinder }}$

$$
=\frac{4 \pi^{2}}{4 \pi^{2}}=\frac{1}{1}
$$

$=1: 1$.

Link for reference:

https://www.youtube.com/watch?v=tCviX-PSFi0
https://www.youtube.com/watch?v=kQfvbXBoIN4 (Exercise 13.4 Q9)

Block 4:

LESSON DEVELOPMENT

CASE STUDY

Find the surface area of the given solid

[^0]The surface area of a rectangular prism of length' L ', breadth ' B ' and height ' H ' is \qquad

If a cylinder has the same radius and height as a sphere, then the ratio of their volume is
(i) $1: 1$
(ii) $3: 4$
(iii) $4: 3$
(iv) $3: 2$

PRACTICE QUESTIONS FROM EXEMPLAR:

Question 1:

If the radius of a sphere is $2 r$, then its volume will be
(a) $\frac{4}{3} \pi r^{3}$
(b) $4 \pi r^{3}$
(c) $\frac{8 \pi r^{3}}{3}$
(d) $\frac{32}{3} \pi r^{3}$

Question2:

A cone is 8.4 cm high and the radius of its base is 2.1 cm . It is melted and recast into a sphere. The radius of the sphere is
(a) 4.2 cm
(b) 2.1 cm
(c) 2.4 cm
(d) 1.6 cm

Question3:

The radius of a hemispherical balloon increases from 6 cm to 12 cm as air is being pumped into it. The ratios of the surface areas of the balloon in the two cases is
(a) $1: 4$
(b) $1: 3$
(c) $2: 3$
(d) $2: 1$

Write whether true or false and justify your answer

Question4:

The volume of a sphere is equal to two-third of the volume of a cylinder whose height and diameter are equal to the diameter of the sphere.

Question5:

If the radius of a right circular cone is halved and height is doubled, then volume will remain unchanged,

Question6:

In a right circular cone, height, radius and slant height do not always be sides of a right triangle,

Question7:

The volume of the largest right circular cone that can be fitted in a cube whose edge is $2 r$ equals to the volume of a hemisphere radius r.

Question8:

A cone, a hemisphere and a cylinder stand on equal bases and have the same height. The ratio of their volumes is $1: 2: 3$.

[^0]: If we calculate the surface area and volume of a polyhedron
 (i)surface area will be greater than the volume (ii)surface area will be less than the volume
 (iii)Surface area will be equal to the volume (iv) both cannot be compared.

