```
WEEK: 1 }\mp@subsup{}{}{\mathrm{ st }}\mathrm{ to 5 }\mp@subsup{}{}{\mathrm{ th }}\mathrm{ November
SUBJECT: MATHEMATICS
CLASS: X
NO. OF BLOCKS: 4
TOPIC: Triangles(Part- 2)
```


Guidelines:-

Dear students, kindly refer to the following link of notes/video links from the chapter https://ncert.nic.in/ncerts///jemh106.pdf

SUBTOPICS:-

- Areas of Similar Triangles
- Pythagoras Theorem
- Converse of Pythagoras Theorem

INSTRUCTIONAL AIDS:-Presentation by screen sharing, offline whiteboard, online whiteboard, YouTube links, E-lesson.

LEARNING OUTCOMES:-

Each Student will be able

- find the relation between the ratio of areas of Similar triangles and its sides
- state and apply Pythagoras Theorem
- state and apply Converse of Pythagoras Theorem

Block 1

Lesson Development

Areas of Similar Triangles

You have learnt that in two similar triangles, the ratio of their corresponding sides is the same. Do you think there is any relationship between the ratio of their areas and the ratio of the corresponding sides? You know that area is measured in square units. So, you may expect that this ratio is the square of the ratio of their corresponding sides. This is indeed true and we shall prove it in the next theorem.
Theorem: The ratio of the areas of two similar triangles is equal to the square of the ratio of
their corresponding sides.

Activity

Let us verify the theorem through this manual activity

Materials Required

Chart paper, construction box, colored pens, a pair of scissors, fevicol

Procedure

1. Take a chart paper and cut a $\triangle \mathrm{ABC}$ with $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}, \mathrm{CA}=6 \mathrm{~cm}$.
2. Mark 5 points $P_{1}, P_{2}, \ldots ., P_{5}$ at a distance of 1 cm each on side $A B$ and $Q_{1}, Q_{2}, \ldots .$. , Q_{5} at a distance of 1 cm each on side $A C$ as shown in fig. (I).

3. Join $\mathrm{P}_{1} \mathrm{Q}_{1}, \mathrm{P}_{2} \mathrm{Q}_{2}, \ldots, \mathrm{P}_{5} \mathrm{Q}_{5}$ as shown in fig. (ii).

Fig. (ii)
4. Draw lines parallel to $A C$ from P_{1}, P_{2}, P_{5} and also draw lines parallel to $A B$ from the points $Q_{1}, Q_{2}, \ldots \ldots ., Q_{5}$ as shown in fig. (iii).

Fig. (iii)
5. Thus $\triangle \mathrm{ABC}$ is divided into 36 smaller triangles and all are similar to each other and of equal area.
6. Construct a $\triangle \mathrm{PQR}$ with $\mathrm{PQ}=\frac{1}{2} \mathrm{of} \mathrm{AB}, \mathrm{PR}=\frac{1}{2} \mathrm{of} \mathrm{AC}$ and $\mathrm{QR}=\frac{1}{2} \mathrm{of} \mathrm{BC}$ i.e. 3 cm each on another chart paper.
7. Mark $\mathrm{D}_{1}, \mathrm{D}_{2}$ and $\mathrm{E}_{1}, \mathrm{E}_{2}$ on sides PQ and PR respectively.
8. Repeat steps 3 and 4.
9. Thus $\triangle \mathrm{PQR}$ is divided into 9 smaller similar triangles equal in area.

Observation

1. area of $\triangle \mathrm{ABC}=$ area of 36 smaller $\Delta ' \mathrm{~s}$
2. area of $\triangle P Q R=$ area of 9 smaller $\Delta ' s$
3. $\frac{P Q}{A B}=\frac{3}{6}=\frac{1}{2}=\frac{P R}{A C}$
4. $\frac{\text { Area }}{\text { Area }}$ of $\quad \triangle \mathrm{Of} \quad \triangle A B R=\frac{P Q^{2}}{A B^{2}}$
$=\left[9\right.$ smaller Δ 's $/ 36$ smaller $\Delta ' s=\frac{1}{4}=(1 / 2)^{2}$

Result

Thus, it is verified that the ratio of the areas of two similar triangles is equal to the ratio of the square of their respective sides.

Ex 6.4 Question 1

Let $\triangle A B C \sim \triangle D E F$ and their areas be, respectively, $64 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$. If $E F=15.4$ cm , find BC.
Solution:

We have $\triangle A B C \sim \triangle D E F$
We have $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
So, $\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{CA}}{\mathrm{FD}}$
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\left(\frac{\mathrm{BC}}{\mathrm{EF}}\right)^{2}$
$\Rightarrow \quad \frac{64}{121}=\frac{(\mathrm{BC})^{2}}{(15.4)^{2}}=\frac{\mathrm{BC}^{2}}{237.16}$
$\Rightarrow \quad 121 \mathrm{BC}^{2}=237.16 \times 64$
$\Rightarrow \quad \mathrm{BC}^{2}=\frac{15178.24}{121}=125.44$
$\Rightarrow \quad B C=\sqrt{125.44}=11.2 \mathrm{~cm}$.
Question 2.
Diagonals of a trapezium $A B C D$ with $A B|\mid D C$ intersect each other at the point 0 . If $A B=2 C D$, find the ratio of the areas of triangles $A O B$ and COD.

Solution:

In the figure below, a trapezium $A B C D$ is shown, in which $A B|\mid D C$ and $A B=2 D C$. Its diagonals interest each other at the point O .

In $\triangle A O B$ and $\triangle C O D$

$$
\begin{array}{lr}
\angle \mathrm{AOB}=\angle \mathrm{COD} & \text { [Vertically opposite angles] } \\
\angle \mathrm{OAB}=\angle \mathrm{OCD} & \text { [Corresponding angles] } \\
\therefore \triangle \mathrm{AOB} \sim \triangle \mathrm{COD} & \text { [By AA similarity] } \\
\therefore \frac{\operatorname{ar}(\triangle \mathrm{AOB})}{\operatorname{ar}(\triangle \mathrm{COD})}=\frac{\mathrm{AB}^{2}}{\mathrm{DC}^{2}} & =\frac{(2 \times \mathrm{DC})^{2}}{\mathrm{DC}^{2}} \\
& =\frac{4 \times \mathrm{DC}^{2}}{\mathrm{DC}^{2}}=\frac{4}{1}
\end{array}
$$

Hence, $\operatorname{ar}(\triangle \mathrm{AOB}): \operatorname{ar}(\triangle \mathrm{COD})=\mathbf{4}: \mathbf{1}$

Refer to the following links to understand more about applications of this theorem https://www.examfear.com/free-video-lesson/Class-10/Maths/Triangles/part35/Triangles Part 35 (Theorem Ratio of Sides of triangle).htm https://www.examfear.com/free-video-lesson/Class-10/Maths/Triangles/part36/Triangles Part 36 (Theorem Ratio of Area of triangle).htm https://www.examfear.com/free-video-lesson/Class-10/Maths/Triangles/part37/Triangles Part 37 (Example Ratio of Area of triangle).htm

Block 2

Lesson Development

The following questions from Exercise 6.4 will be discussed during the session
Question 3.
In the given figure, $A B C$ and DBC are two triangles on the same base $B C$. If $A D$ intersects
$B C$ at O, show that: $\frac{\operatorname{ar}(A B C)}{\operatorname{ar(DBC)}}=\frac{A O}{D O}$

Question 4.

If the areas of two similar triangles are equal, prove that they are congruent.

Question 5.

D, E and F are respectively the mid-points of sides $A B, B C$ and $C A$ of $\triangle A B C$. Find the ratio of the areas of $\triangle D E F$ and $\triangle A B C$.

Question 6.

Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians.

Question 7.

Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals.

Assignment: Do Q8 and Q9 from Ex 6.4 in your Math Register.

Block 3

Lesson Development

Pythagoras Theorem

[^0]

The Pythagorean Theorem tells us that the relationship in every right triangle is:

$$
a^{2}+b^{2}=c^{2}
$$

Activity

Objective

To verify Pythagoras theorem by performing an activity.

Procedure

Step 1: Paste a sheet of white paper. On this paper, draw a right-angled triangle ABC, right angled at C. Let the lengths of the sides $A B, B C$ and $C A$ be c, a and b units respectively (see Figure 10.1).

Fig. 10.1
Step 2: Make four exact copies of the right-angled $\triangle A B C$ on the other sheet of paper. Also, construct a square with each side measuring c units.
Step 3: Cut these four triangles and the square and arrange them as shown in Figure 10.2.

Fig. 10.2

Observations and Calculations

We observe that by the combination of the square and the four triangles, a new square is formed which clearly has each side equal to ($a+b$) units. Then, the area of the large square formed $=$ area of the square with side $c+4$ (area of $\triangle A B C$)
i.e., $(a+b)^{2}=C^{2}+4(1 / 2 \times a \times b) \quad[\because$ area of $\triangle A B C=1 / 2(a \times b)]$
$\Rightarrow\left(a^{2}+b^{2}+2 a b\right)=c^{2}+2 a b$
$\Rightarrow a^{2}+b^{2}=c^{2}$.
So, the square of the hypotenuse of right-angled $\triangle A B C$ is equal to the sum of the squares of the other two sides.

Result

Pythagoras' theorem is verified.

Converse of the Pythagorean Theorem

The theorem states that if the square of the length of the longest side of a triangle is equal to the sum of the squares of the other two sides, then the triangle is a right triangle.
(Proof of the above theorem is deleted)

Ex 6.5 Question 1.

Sides of triangles are given below. Determine which of them are right triangles. In case of a right triangle, write the length of its hypotenuse.
(i) $7 \mathrm{~cm}, 24 \mathrm{~cm}, 25 \mathrm{~cm}$
(ii) $3 \mathrm{~cm}, 8 \mathrm{~cm}, 6 \mathrm{~cm}$

Solution:

Solution:

(i) $(7)^{2}+(24)^{2}=49+576=625=(25)^{2}$

Therefore, these are the sides of a right triangle. The length of its hypotenuse is 25 cm .
(ii) $(3)^{2}+(6)^{2}=9+36=45 \neq 64 \neq(8)^{2}$

Therefore, these are not the sides of a right triangle.

Question 2.

$P Q R$ is a triangle right angled at P and M is a point on $Q R$ such that $P M \perp Q R$. Show that $\mathrm{PM}^{2}=\mathrm{QM}$ X MR

Question 3.
In the given figure, $A B D$ is a triangle right angled at A and $A C i$. BD. Show that
(i) $A B^{2}=B C$. $B D$
(ii) $\mathrm{AC}^{2}=\mathrm{BC}$. DC
(iii) $A D^{2}=B D . C D$

Question 5.

$A B C$ is an isosceles triangle with $A C=B C$. If $A B^{2}=2 A C^{2}$, Prove that $A B C$ is a right triangle.

Question 7.

Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.

Question 8.
In the given figure, O is a point in the interior of a triangle $A B C, O D \perp B C, O E \perp A C$ and $\mathrm{OF} \perp \mathrm{AB}$. Show that
(i) $\mathrm{OA}^{2}+\mathrm{OB}^{2}+\mathrm{OC}^{2}-\mathrm{OD}^{2}-\mathrm{OE}^{2}-\mathrm{OF}^{2}=\mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{CE}^{2}$
(ii) $A F^{2}+B D^{2}+C E^{2}=A E^{2}+C D^{2}+\mathrm{BF}^{2}$.

Assignment: Do questions Q1 (iii) ,(iv), Q4 , Q6 from Exercise 6.5 in your Math register.

Refer to the following links to understand more about Pythagoras theorem and its converse
https://www.examfear.com/free-video-lesson/Class-10/Maths/Triangles/part38/Triangles Part 38 (Proof Pythagoras Theorem).htm https://www.examfear.com/free-video-lesson/Class-10/Maths/Triangles/part41/Triangles Part 41 (Example Pythagoras Theorem).htm
https://www.examfear.com/free-video-lesson/Class-10/Maths/Triangles/part42/Triangles Part 42 (Example Pythagoras Theorem).htm

Block 4

Lesson Development

Ex6.5 Question9

A ladder 10 m long reaches a window 8 m above the ground. Find the distance of the foot of the ladder from base of the wall.
Solution:
Let the distance from the wall AB be $x \mathrm{~m}$. Then by Pythagoras' Theorem, we have

Hence, the distance of ladder from the wall is $\mathbf{6 ~ m}$.

Ex 6.5 Class 10- Question 10.
A guy wire attached to a vertical pole of height 18 m is 24 m long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut? Solution:

Let the distance of the stake from the base be $x \mathrm{~m}$.
Then in right $\triangle A B C$ by Pythagoras' Theorem,

$$
\begin{aligned}
& \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2} \\
& \Rightarrow \quad(24)^{2}=x^{2}+18^{2} \\
& \Rightarrow \quad 576=x^{2}+324 \\
& \Rightarrow 576-324=x^{2} \\
& \Rightarrow \quad x^{2}=252 \\
& \Rightarrow \quad x=\sqrt{252}=6 \sqrt{7} \mathrm{~m} \text {. }
\end{aligned}
$$

Hence, the stake should be driven at a distance of $6 \sqrt{7} \mathrm{~m}$ from the base of the pole.

Question 11.

An airplane leaves an airport and flies due north at a speed of 1000 km per hour. At the same time, another airplane leaves the same airport and flies due west at a speed of 1200 km per hour. How far apart will be the two planes after $1^{\frac{1}{2}}$ hours?

Question 13.

D and E are points on the sides $C A$ and $C B$ respectively of a triangle ABC right angled at C. Prove that $A E^{2}+B D^{2}=A B^{2}+D E^{2}$.

Question 14.

The perpendicular from A on side $B C$ of a $\triangle A B C$ intersects $B C$ at D such that $D B=3 C D$ (see the figure). Prove that $2 A B^{2}=2 A C^{2}+B C^{2}$.

Question 15.

In an equilateral triangle $A B C$, D is a point on side $B C$, such that $B D=\frac{1}{3} B C$. Prove that $9 A D^{2}=7 A B^{2}$.

Question 16.

In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.
Refer to the following links to understand more about Pythagoras theorem's applications https://www.examfear.com/free-video-lesson/Class-10/Maths/Triangles/part-
43/Triangles Part 43 (Example).htm
https://www.examfear.com/free-video-lesson/Class-10/Maths/Triangles/part-
44/Triangles Part 44 (Example Pythagoras Theorem).htm
https://www.examfear.com/free-video-lesson/Class-10/Maths/Triangles/part-

Assignment: Do questions Q12 ,Q17 in your Math Register.

AAC Activity

Construct three polynomials (linear, Quadratic and Cubic) with number 3 as one of the zero of the polynomials.

Summary:

The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
If a perpendicular is drawn from the vertex of the right angle of a right triangle to the hypotenuse, then the triangles on both sides of the perpendicular are similar to the whole triangle and also to each other.
In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides (Pythagoras Theorem).
If in a triangle, square of one side is equal to the sum of the squares of the other two sides, then the angle opposite the first side is a right angle.

1. Refer to the following links to practice more questions
a) https://www.learncbse.in/triangles-cbse-class-10-extra-questions-with-solutions/
b) From Khan Academy Assignments
https://www.khanacademy.org/math/in-in-grade-10-ncert
c) www.examfear.com
d) http://www.ei-india.com/mindspark-math (free trial for 60 days)

[^0]: In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.
 (Proof of the theorem will be discussed in the class)

