```
WEEK - 12 'h October, 2020-164
SUBJECT - MATHEMATICS
CLASS - X
No. OF BLOCKS - }
TOPIC - SURFACE AREA AND VOLUME (CHAPTER -13) Exercise13.3
    Construction-11.2
```


GUIDELINES:-

Dear students, kindly refer to the following link of notes/video links from the chapter "SURFACE AREA AND VOLUME" and
"Construction". Thereafter, do the questions in your Math register. https://ncert.nic.in/textbook.php?jemh1=13-15

SUBTOPICS:-

- Conversion of 3-D solids from one shape to another.
- Recapitulation of formulae of Volume and surface area of cube, cuboid, cone, cylinder, sphere and hemisphere.
- Application of the above formulae in daily life application questions.
- Construction of tangents to a circle from a point outside the circle.

INSTRUCTIONAL AIDS:-

Presentation by screen sharing, offline whiteboard, online whiteboard, YouTube links, E lesson.

LEARNING OUTCOMES:-

Each student will be able to

- apply the formulae of volumes of these 3- D objects
- apply these formulae to solve questions related to daily life situations
- identify and apply suitable formula
- construct the tangents to a circle from a point outside the circle

Block 1

Introduction Activity -

- Recapitulation of concepts related to volume and surface area of cube, cuboid, cone, cylinder, sphere and hemisphere.
- Let us recall the formulae.

Name	Figure	Curved Surface Area	Total Surface Area	Volume
Cuboid	$2(l+b) h$	$2(l b+b h+h l)$	$1 b h$	
Cube Right Circular Cylinder		$2 a^{2}$	$6 a^{2}$	a^{2}
Right Circular Cone		$2 \pi r h$	$2 \pi r(h+r)$	$\pi r^{2} h$

Lesson Development:-

Shape Conversion of Solids-

When a solid is converted into another solid of a different shape (by melting or casting), the volume remains constant.

Suppose a metallic sphere of radius 9 cm is melted and recast into the shape of a cylinder of radius 6 cm . Since the volume remains the same after a recast, the volume of the cylinder will be equal to the volume of the sphere.

The radius of the cylinder is known, however the height is not known. Let h be the height of the cylinder.
r_{1} and r_{2} be the radius of the sphere and cylinder respectively. Then,
V (sphere) $=\mathrm{V}$ (cylinder)
$\Rightarrow 4 / 3 \pi r_{1}{ }^{3}=\pi r_{2}{ }^{2} h$
$\Rightarrow 4 / 3 \pi\left(9^{3}\right)=\pi\left(6^{2}\right) h \quad$ (On substituting the values)
$\Rightarrow \mathrm{h}=27 \mathrm{~cm}$

Application of surface area and volume-Refer to the following link to understand few daily life situations-

Exercise13.3 (Refer to the following links)

https://www.youtube.com/watch?v=E gi6FUr7uE

https://www.youtube.com/watch?v=c4scQqg8QjE

https://www.youtube.com/watch?v=fs3w0wiQo8I

https://www.youtube.com/watch?v=flK23NeAtLs
3. A $\mathbf{2 0 ~ m}$ deep well with diameter 7 m is dug and the earth from digging is evenly spread out to form a platform 22 m by 14 m . Find the height of the platform.

Solution:

It is given that the shape of the well is in the shape of a cylinder with a diameter of 7 m
So, radius $=7 / 2 \mathrm{~m}$
Also, Depth $(\mathrm{h})=20 \mathrm{~m}$
Volume of the earth dug out will be equal to the volume of the cylinder
\therefore Volume of Cylinder $=\pi \times r^{2} \times h$
$=22 \times 7 \times 5 \mathrm{~m}^{3}$
Let the height of the platform $=\mathrm{H}$
Volume of soil from well (cylinder) = Volume of soil used to make such platform
$\pi \times r^{2} \times h=$ Area of platform \times Height of the platform
We know that the dimension of the platform is $=22 \times 14$
So, Area of platform $=22 \times 14 \mathrm{~m}^{2}$
$\therefore \pi \times r^{2} \times h=22 \times 14 \times H$
$\Rightarrow \mathrm{H}=2.5 \mathrm{~m}$
4. A well of diameter 3 m is dug 14 m deep. The earth taken out of it has been spread evenly all around it in the shape of a circular ring of width 4 m to form an embankment. Find the height of the embankment.

Solution:

The shape of the well will be cylindrical as given below.

Given, Depth $\left(h_{1}\right)$ of well $=14 \mathrm{~m}$
Diameter of the circular end of the well $=3 \mathrm{~m}$

So, Radius $\left(r_{1}\right)=3 / 2 \mathrm{~m}$
Width of the embankment $=4 \mathrm{~m}$
From the figure, it can be said that the embankment will be a cylinder having an outer radius
$\left(\mathrm{r}_{2}\right)$ as $4+(3 / 2)=11 / 2 \mathrm{~m}$ and inner radius $\left(\mathrm{r}_{1}\right)$ as $3 / 2 \mathrm{~m}$
Now, let the height of embankment be h_{2}
\therefore Volume of soil dug from well $=$ Volume of earth used to form embankment
$\Rightarrow \pi \times r_{1}^{2} \times \mathrm{h}=\pi \times\left(r_{2}^{2}-r_{1}^{2}\right) \times h_{2}$
Solving this, we get,
The height of the embankment $\left(\mathrm{h}_{2}\right)$ as 1.125 m .
8. Water in a canal, 6 m wide and 1.5 m deep, is flowing with a speed of $10 \mathrm{~km} / \mathrm{h}$. How much area will it irrigate in 30 minutes, if 8 cm of standing water is needed?

Solution:

It is given that the canal is the shape of a cuboid with dimensions as:
Breadth (b) $=6 \mathrm{~m}$ and Height $(\mathrm{h})=1.5 \mathrm{~m}$
It is also given that
The speed of canal $=10 \mathrm{~km} / \mathrm{hr}$
Length of canal covered in 1 hour $=10 \mathrm{~km}$
Length of canal covered in 60 minutes $=10 \mathrm{~km}$
Length of canal covered in $1 \mathrm{~min}=(1 / 60) \times 10 \mathrm{~km}$
Length of canal covered in $30 \mathrm{~min}(\mathrm{I})=(30 / 60) \times 10=5 \mathrm{~km}=5000 \mathrm{~m}$

We know that the canal is cuboidal in shape. So,
Volume of canal $=\mid x b x h$
$=5000 \times 6 \times 1.5 \mathrm{~m}^{3}$
$=45000 \mathrm{~m}^{3}$

Now,
Volume of water in canal = Volume of area irrigated
= Area irrigated x Height
So, Area irrigated $=56.25$ hectares
\therefore Volume of canal $=1 \times b x h$
$45000=$ Area irrigated $\times 8 \mathrm{~cm}$
$45000=$ Area irrigated $\times(8 / 100) \mathrm{m}$
Or, Area irrigated $=562500 \mathrm{~m}^{2}=56.25$ hectares.

ASSIGNMENT- Questions to be discussed in the class (Exercise-13.3)
2. Metallic spheres of radii $6 \mathrm{~cm}, 8 \mathrm{~cm}$ and 10 cm , respectively, are melted to form a single solid sphere. Find the radius of the resulting sphere.
6. How many silver coins, 1.75 cm in diameter and of thickness 2 mm , must be melted to form a cuboid of dimensions $5.5 \mathrm{~cm} \times 10 \mathrm{~cm} \times 3.5 \mathrm{~cm}$?
9. A farmer connects a pipe of internal diameter 20 cm from a canal into a cylindrical tank in her field, which is 10 m in diameter and $\mathbf{2 ~ m}$ deep. If water flows through the pipe at the rate of $\mathbf{3 k m} / \mathrm{h}$, in how much time will the tank be filled?

HW- Exercise 13.3-Q-1,5,7

Block 2 (CHAPTER 11 - Exercise 11.2)

Activity -. Manual activity on length of tangents drawn from an external point to a circle are equal.

Lesson development - We have learnt that
A tangent to a circle is a line which touches the circle at exactly one point.

Number of Tangents to a Circle from a Given Point
i) If the point is in an interior region of the circle, any line through that point will be a secant. So, in this case, there is no tangent to the circle.
ii) When the point lies on the circle, there is accurately only one tangent to a circle.

ii) When the point lies outside the circle, there are exactly two tangents to a circle

Tangents to a Circle from a Point outside the Circle

Construction of Tangents to a Circle from a Point outside the Circle

To construct the tangents to a circle from a point outside it.
Consider a circle with centre O and let P be the exterior point from which the tangents to be drawn.

Step 1: Join PO and bisect it. Let M be the midpoint of PO.
Step 2: Taking M as the centre and MO (or MP) as radius, draw a circle. Let it intersect the given circle at the points Q and R.

Step 3: Join PQ and PR
Step 3: $P Q$ and $P R$ are the required tangents to the circle.

Construction of Tangents to a Circle from a Point on the Circle

To draw a tangent to a circle through a point on it.
Step 1: Draw the radius of the circle through the required point.
Step 2: Draw a line perpendicular to the radius through this point. This will be tangent to the circle.

ASSIGNMENT- EXERCISE 11.2

In each of the following, give the justification of the construction also:

1. Draw a circle of radius 6 cm . From a point 10 cm away from its centre, construct the pair of tangents to the circle and measure their lengths.
2. Construct a tangent to a circle of radius 4 cm from a point on the concentric circle of radius 6 cm and measure its length. Also verify the measurement by actual calculation.

Block 3

Activity- Refer to the following link. https://www.examfear.com/free-video-lesson/Class-10/Maths/Constructions/part-3/Constructions Part 3 (Draw tangent to a circle).htm

Lesson Development:-
3. Draw a circle of radius 3 cm . Take two points P and Q on one of its extended diameter each at a distance of 7 cm from its centre. Draw tangents to the circle from these two points P and Q

Solution- PA, PB and QC, QD are the required tangents in the following figure:

Justification:

The construction of the given problem can be justified by proving that PQ and PR are the tangents to the circle of radius 3 cm with centre 0 .
To prove this, join OA and OB.
From the construction,
$\angle \mathrm{PAO}$ is an angle in the semi-circle.
We know that angle in a semi-circle is a right angle, so it becomes,
$\therefore \angle \mathrm{PAO}=90^{\circ}$
Such that
$\Rightarrow \mathrm{OA} \perp \mathrm{PA}$
Since OA is the radius of the circle with radius $3 \mathrm{~cm}, \mathrm{PA}$ must be a tangent of the circle. Similarly, we can prove that PB, QC and QD are the tangent of the circle.
Hence, justified
4. Draw a pair of tangents to a circle of radius 5 cm which are inclined to each other at an angle of 60°

Justification:
The construction can be justified by proving that
$\angle Q P R=60^{\circ}$
By our construction
$\angle \mathrm{OQP}=90^{\circ}$
$\angle O R P=90^{\circ}$
And $\angle Q O R=120^{\circ}$
We know that the sum of all interior angles of a quadrilateral $=360^{\circ}$
$\angle \mathrm{OQP}+\angle \mathrm{QOR}+\angle \mathrm{ORP}+\angle \mathrm{QPR}$
$=360^{\circ}$
$90^{\circ}+120^{\circ}+90^{\circ}+\angle Q P R=360^{\circ}$
Therefore, $\angle \mathrm{QPR}=60^{\circ}$
Hence Justified

$P Q$ and $P R$ are required tangents.

ASSIGNMENT-
5. Draw a line segment $A B$ of length 8 cm . Taking A as centre, draw a circle of radius 4 cm and taking B as centre, draw another circle of radius 3 cm . Construct tangents to each circle from the centre of the other circle.

Block -4

Q-6.
Let $A B C$ be a right triangle in which $A B=6 \mathrm{~cm}, B C=8 \mathrm{~cm}$ and $\angle B=90^{\circ}$. $B D$ is the perpendicular Burn B on $A C$. The circle through B, C, D is drawn. Construct the tangents from A to this circle.

Justification:
The construction can be justified by proving that AG and AB are the tangents to the circle.
From the construction, join EQ.
$\angle A Q E$ is an angle in the semi-circle. We know that an angle in a semi-circle is a right angle.
$\therefore \angle \mathrm{AQE}=90^{\circ}$
$\Rightarrow \mathrm{EQ} \perp \mathrm{AQ}$
Since $E Q$ is the radius of the circle, $A Q$ has to be a tangent of the circle.
Similarly, $\angle B=90^{\circ}$
$\Rightarrow \mathrm{AB} \perp \mathrm{BE}$
Since BE is the radius of the circle, AB has to be a tangent of the circle.
Hence, justified.

Assignment-

7. Draw a circle with the help of a bangle. Take a point outside the circle. Construct the pair of tangents from this point to the circle.

Summary-

1. From an external point, two tangents can be drawn to a circle which are equal.
2. Every construction has a justification.
3. Note- (Exercises-13.4,11.1 are deleted)

Assignment-

1. O is the centre of the circle. $P Q$ is a chord and $P R$ is the tangent at P which makes an angle of 50° with PQ. Find angle POQ.
2. $D E$ and $D F$ are tangents from an external point D to a circle with centre A. If $D E=5 \mathrm{~cm}$ and $D E$ is perpendicular to $D F$, then the radius of the circle is \qquad
3. A line which intersects a circle in two points is called \qquad .
4. State true or false: A tangent to the circle can be drawn from a point inside the circle.
5. The point at which a line touches a circle is called \qquad _.
6. In the given fig. if $A C=9$, find $B D$.
7. Refer to the following links to practice more questions.
a)
https://diksha.gov.in/play/collection/do 3129243959686676481258 ?referrer=utm source
 \%3Dshare content
b) From Khan Academy Assignments
https://www.khanacademy.org/math/in-in-grade-10-ncert
c) www.examfear.com
d) http://www.ei-india.com/mindspark-math (free trial for 60 days)
