SUBJECT:-PHYSICS CHAPTER:-MOTION Class IX

TOPIC : EQUATIONS OF MOTION

GUIDELINES :

Dear students,

- There are three assignments:
$>$ Assignment 11: Based on first equation of motion
$>$ Assignment 12: Based on second equation of motion
$>$ Assignment 13: Based on third equation of motion
- Solve the assignments in a separate Physics notebook.
- Suitable Video links have been provided for better understanding of the concept.
https://youtu.be/qD3zHo6QEdM
- Do read NCERT too for better understanding of these concepts

NCERT LINK FOR THE CHAPTER:
http://ncert.nic.in/textbook/textbook.htm?iesc1=8-15 (page no 107,108,109)

SUBTOPICS: Equations of motion
a) $v=u+a t$
b) $S=u t+1 / 2 a t^{2}$
c) $\mathbf{v}^{2}-u^{2}=2$ as

DERIVATIONS:

Let us consider an object moving in a straight line with an initial velocity u m / s, attaining finally a velocity of $\mathrm{v} \mathrm{m} / \mathrm{s}$ in time t sec , after being accelerated through a m/s ${ }^{2}$

During this time, it covers a distance of $\mathrm{S} m$
Graphically this motion can be represented as follows:

Please note:
$>$ All the three equations of motion can be derived with reference to this scenario.
$>$ These equations of motion relate various physical quantities like u, v, a, t and S.
$>$ These equations are valid for uniformly accelerated motion.

Now let us derive the equations:

A) FIRST EQUATION OF MOTION

v=u+at

The slope of v-t graph of a moving object determines its acceleration

In the above plotted graph

$$
a=\text { Slope of v-t graph }=A B / B C
$$

$A B=v-u$
$\mathrm{BC}=\mathrm{t}$
Hence $a=(v-u) / t$

Or,

$$
\mathbf{v}=\mathbf{u}+\mathbf{a t}
$$

Hence, derived

NOW SOLVE THIS ASSIGNMENT:

ASSIGNMENT 11

1. Derive the first equation of motion for a uniformly accelerated body.
2. A ball accelerated by $2 \mathrm{~m} / \mathrm{s}^{2}$ experiences the increase in its velocity from $5 \mathrm{~m} / \mathrm{s}$ to $10 \mathrm{~m} / \mathrm{s}$. In what time did it experience this change?

B) SECOND EQUATION OF MOTION:

$$
S=u t+1 / 2 a t^{2}
$$

Concept used:

Area under v-t graph gives the

 displacement/ distance covered by an object.

$$
\begin{aligned}
S & =\text { Area of rectangle OCBD + AREA OF TRIANGLE ABC } \\
& =B D \times O D+1 / 2 A B \times B C \\
& =u t+1 / 2(v-u) \times t \quad \text { Note: }(v-u=a t) \\
S & =u t+1 / 2 \mathrm{at}^{2}, \text { Hence, derived. }
\end{aligned}
$$

ASSIGNMENT 12

1. Derive the second equation of motion graphically for a body under uniformly accelerated motion.
2. A ball is thrown up with a velocity of $10 \mathrm{~m} / \mathrm{s}$. In what time will it reach the highest point of its journey? Find the highest point of its journey. (take $\mathrm{a}=\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)
c) THIRD EQUATION OF MOTION:

$$
\mathbf{v}^{2}-\mathbf{u}^{2}=\mathbf{2 a s}
$$

Concept used:

Area under v-t graph gives the
 displacement/ distance covered by an object.

$S=$ Area of trapezium OBAC

$=1 / 2 \times$ (sum of parallel sides) x height

$$
=1 / 2 x(O C+A B) \times O B
$$

$$
=1 / 2 \times(u+v) X t
$$

$$
=1 / 2 \times(u+v) \times(v-u) / a
$$

$=1 / 2 \times\left(v^{2}-u^{2}\right) / \mathrm{a}$
$\mathbf{v}^{2}-\mathbf{u}^{2}=$ 2as, Hence Derived

ASSIGNMENT 13

1. Derive the following expression, where symbols have their usual meaning.

$$
\mathbf{v}^{2}-\mathbf{u}^{2}=\mathbf{2 a s}
$$

2. An object moves along a straight line with an acceleration of $2 \mathrm{~m} / \mathrm{s} 2$. If its initial speed is $10 \mathrm{~m} / \mathrm{s}$, what will be its speed 2 s later?
3. A bullet hits a Sand box with a velocity of $20 \mathrm{~m} / \mathrm{s}$ and penetrates it up to a distance of 6 cm . Find the deceleration of the bullet in the sand box.
