SUBJECT:- MATHEMATICS

Class-IX

CHAPTER:- 2 (PART-6)

TOPIC:-POLYNOMIALS

GUIDELINES

Dear Students

Kindly read the content given below and view the links shared for better understanding.

- Solve the given NCERT questions in the yellow register provided in the notebook set.

Link for the chapter : http://ncert.nic.in/textbook/textbook.htm?jemh1=3-15

Introduction :

Let us Recall the following concepts:

The Remainder Theorem

When we divide $p(x)$ by the simple polynomial $x-$ a we get:

$$
p(x)=(x-a) \cdot q(x)+r(x)
$$

$x-a$ is degree $\mathbf{1}$, so $r(x)$ must have degree $\mathbf{0}$, so it is just some constant r :

$$
p(x)=(x-a) \cdot q(x)+r
$$

Now see what happens when we have x equal to a :

$$
\begin{gathered}
p(a)=(a-a) \cdot q(a)+r \\
p(a)=(0) \cdot q(a)+r
\end{gathered}
$$

$$
p(a)=r
$$

So we get this:

The Remainder Theorem:

When we divide a polynomial $p(x)$ by \mathbf{X}-a then the remainder is $\mathbf{p}(\mathbf{a})$.

So, to find the remainder after dividing by $\mathbf{X}-\mathbf{a}$, we need not do any division:

Just calculate $\mathrm{p}(\mathrm{a})$.

Let us see an example:

Example: The remainder after $2 x^{2}-5 x-1$ is divided by $x-3$
(Our example from above)
We don't need to divide by ($\mathbf{x}-\mathbf{3}$) ... just calculate $\mathbf{f (3)}$:

$$
\begin{gathered}
2(3)^{2}-5(3)-1=2 \times 9-5 \times 3-1 \\
=18-15-1 \\
=\mathbf{2}
\end{gathered}
$$

And that is the remainder we got from our calculations above.
We didn't need to do Long Division at all!

Subtopics:

The Factor Theorem

Now ...
What if we calculate $p(x)$ and it is a zero?
.... That means the remainder is zero, and
$\mathbf{X}-\mathbf{a}$ must be a factor of the polynomial $p(x)$.

Example: $x^{2}-3 x-4$

$$
f(4)=(4)^{2}-3(4)-4=16-12-4=0
$$

so ($x-4$) must be a factor of $x^{2}-3 x-4$

Therefore according to the Factor Theorem :

If $p(x)$ is a polynomial of degree $n \geq 1$ and a is any real number, then
(i) $x-a$ is a factor of $p(x)$ if $p(a)=0$, and
(ii) $p(a)=0$, if $x-a$ is a factor of $p(x)$.

Proof by Remainder Theorem

By Remainder Theorem,

$$
p(x)=(x-a) q(x)+p(a)
$$

(i) If $p(a)=0$, then $p(x)=(x-a) q(x)$, which shows that $x-a$ is a factor of $p(x)$.
(ii) Since $(x-a)$ is a factor of $p(x), p(x)=(x-a) g(x)$ for some polynomial $g(x)$.

In this case $p(a)=(a-a) g(a)=0$
Proof of the theorem : https://youtu.be/19M-c5tMmls Important:-

1. If $f(-c)=0$, then $(x+c)$ is a factor of the polynomial $f(x)$.
2. If $p(d / c)=0$, then $(c x-d)$ is a factor of the polynomial $p(x)$.
3. If $p(-d / c)=0$, then $(c x+d)$ is a factor of the polynomial $p(x)$.
4. If $p(c)=0$ and $p(d)=0$, then $(x-c)$ and $(x-d)$ are both factors of the polynomial $p(x)$.

Example 1: Examine whether $x+2$ is a factor of $p(x)=x^{3}+3 x^{2}+5 x+6$
Solution : The zero of $x+2$ is -2
As, per factor theorem, $x+2$ is a factor of $p(x)$, if $p(-2)=0$.

$$
\mathrm{p}(-2)=(-2) 3+3(-2) 2+5(-2)+6=0 .
$$

Thus, $x+2$ is factor of $p(x)=x^{3}+3 x^{2}+5 x+6$

Example 2: Show that ($x-1$) is a factor of the polynomial

$$
x^{3}+4 x^{2}+x-6
$$

Solution: Let $p(x)=x^{3}+4 x^{2}+x-6$ be the given polynomial. By factor theorem, ($x-a$) is a factor of a polynomial $p(x)$, if $p(a)=0$. Therefore, in order to prove that $x-1$ is a factor of $p(x)$, we have to show that $p(1)=0$

Now, $\quad P(x)=x^{3}+4 x^{2}+x-6$

$$
\begin{aligned}
P(1) & =1^{3}+4 \times 1^{2}+1-6 \\
& =1+4+1-6=0
\end{aligned}
$$

Hence, $(x-1)$ is a factor of $p(x)=x^{3}+4 x^{2}+x-6$

Example 3: Without actual division, prove that $4 x^{4}-2 x^{3}-$ $6 x^{2}+x+1$ is exactly divisible by $2 x^{2}+x-1$.

Solution: Let $f(x)=4 x^{4}-2 x^{3}-6 x^{2}+x+1$ and $g(x)=$ $2 x^{2}+x-1$ be the given polynomials.

We have, $g(x)=2 x^{2}+x-1$

$$
\begin{aligned}
& =2 x^{2}+2 x-1 x-1(\text { Please note this step }) \\
& =2 x(x+1)-1(x+1)=(2 x-1)(x+1)
\end{aligned}
$$

Therefore, $(2 x-1)$ and ($x+1$) are factors of $g(x)$
In order to prove that $f(x)$ is exactly divisible by $g(x)$, it is sufficient to prove that $2 x-1$ and $x+1$ are factors of $f(x)$. For this it is sufficient to prove that $\mathrm{f}(1 / 2)=0$ and $\mathrm{f}(-1)=0$.

Now, $f(x)=4 x^{4}-2 x^{3}-6 x^{2}+x+1$
$f(1 / 2)=4 \cdot(1 / 2)^{4}-2 \cdot(1 / 2)^{3}-6 \cdot(1 / 2)^{2}+1 / 2+1$

$$
=1 / 4-1 / 4-3 / 2+1 / 2+1=0
$$

$$
\begin{aligned}
f(-1) & =4 \cdot(-1)^{4}-2 \cdot(-1)^{3}-6 \cdot(-1)^{2}-1+1 \\
& =4+2-6-1+1=0
\end{aligned}
$$

$(2 x-1)$ and ($x+1$) are factors of $f(x)$
$g(x)=(2 x-1)(x+1)$ is a factors of $f(x)$
Hence, $f(x)$ is exactly divisible by $g(x)$

Example 4: Find the value of a, if $(x+a)$ is a factor of $x^{3}+a x^{2}-$ $2 x+a+4$.

Solution: Let $p(x)=x^{3}+a x^{2}-2 x+a+4$ be the given polynomial. By Factor Theorem, $(x+a)$ is a factor of $p(x)$
if $p(-a)=0$.

$$
\begin{aligned}
& \text { Now, } \mathrm{p}(-\mathrm{a})=0 \\
& \begin{array}{l}
(-a)^{3}+a(-a)^{2}-2(-a)+a+4=0 \\
-a^{3}+a^{3}+2 a+a+4=0 \\
3 a+4=0 \\
a=-4 / 3
\end{array}
\end{aligned}
$$

Hence, $(x+a)$ is a factor of the given polynomial, if $a=-4 / 3$

Key points and important links for reference:
Application of Factor Theorem with an example :

https://examfear.com/free-video-lesson/Class-

9/Maths/Polynomials/part-
12/Polynomials Part 12 (Factorization using factor theorem).htm

Visit https://examfear.com/ for further reference.

ASSIGNMENT :-

To be done in the yellow register.
Ex 2.4 :
Q 1. ii and iv part
Q 2. ii part
Q 3. Ii and iv part

QUESTIONS FOR PRACTICE

Note : Following questions are for practice only and should be done in a separate practice register/copy of mathematics .

Application of the Factor Theorem

Find whether $x-c$ is a factor of the polynomial $f(x)$ or not in the following cases.

1. $f(x)=4 x^{3}-3 x^{2}-8 x+4, \quad c=3$
2. $f(x)=3 x^{4}-6 x^{3}-5 x+10, \quad c=1$
3. $f(x)=3 x^{6}+2 x^{3}-176, \quad c=-2$
4. $f(x)=4 x^{6}-64 x^{4}-x^{2}-16, \quad c=4$
5. $f(x)=2 x^{4}-x^{3}-2 x-1, \quad c=-1 / 2$
6. The value of k, if $(x-1)$ is a factor of $4 x^{3}+3 x^{2}-4 x+k$, is
(a) 1
(b) 2
(c) -3
(d) 3
