SUBJECT:-MATHEMATICS

CHAPTER:-PLAYING WITH NUMBERS

PART-6

TOPIC: SOME MORE DIVISIBILITY TEST

GUIDELINES:

Dear Students
Kindly refer to the following notes/video links from the Chapter- "PLAYING WITH NUMBERS" SUB TOPIC- "SOME MORE DIVISIBILITY TEST-PART-6" and thereafter do the questions in your Maths notebook.

LINK FOR THE CHAPTER:- http://ncert.nic.in/textbook/textbook.htm?femh1=3-14

INTRODUCTION:

Divisibility rules of whole numbers help us to quickly determine if a number can be divided by a given number without doing a long division.
All of you have studied in previous session, the concept of prime factorisation.
In this lesson we will also explore divisibility rules for larger numbers.

SUB TOPICS

- CO-PRIME NUMBERS
- SOME MORE DIVISIBILITY TEST

KEY POINTS

Co-prime numbers:

(Refer to link on co-prime numbers :
https://www.youtube.com/watch?v=wYsh3wkGl0o)

Any set of numbers which do not have any other common factor other than 1 are called co-prime or relatively prime numbers.

EXAMPLE: 5 and 6 are two consecutive numbers
Factors of $5=1,5$
Factors of $6=1,2,3,6$
This shows that 5 and 6 have no common factor other than 1 . Therefore, they are co-prime numbers.

Properties of co-prime numbers:

All prime numbers are co-prime to each other.
Any two consecutive whole numbers are always co-prime.
Co-prime numbers need not to be prime numbers.

SOME MORE DIVISIBILITY RULES:

(Refer to the link on some more divisibility rules- https://www.examfear.com/free-video-lesson/Class-6/Maths/Playing-With-
Numbers/part26/Maths Playing With Numbers part 26 (Addition division rules)
CBSE Class 6.htm

- If a number is divisible by another number, then it is also divisible by each of the factors of that number.

Example: 18 and 72 are two numbers such that 72 is divisible by 18

$$
72 \div 18=4
$$

Factors of $18=1,2,3,6,9,18$
$72 \div 1=72$,
$72 \div 2=36$,
$72 \div 3=24$,
$72 \div 6=12$,
$72 \div 9=8$,
$72 \div 18=4$
Therefore, 72 is divisible by each of the factors of 18 .

- If a number is divisible by two co-prime numbers, then it is also divisible by their product.

Example: Let's say 90 is divisible by 5 and 9 .
As we know 5 and 9 are co-prime numbers.
So 90 must be divisible by their products.
i.e $5 \times 9=45$ and $90 \div 45=2$

Therefore, 90 is divisible by product of the co-primes 5 and 9 .

- If two given numbers are divisible by a number, then, their sum is also divisible by that number.

Example: 21 and 18 are divisible by 3.
$21 \div 3=7$,
$18 \div 3=6$
Sum of the two numbers is $21+18=39$.
Also $39 \div 3=13$
Therefore, if 21 and 18 are divisible by 3 , then their sum i,e 39 is also divisible by 3 .

- If two given numbers are divisible by a number, then their difference is also divisible by that number.

Example:

58 and 54 are divisible by 2.
$58 \div 2=29$,
$54 \div 2=27$.
Difference of the two numbers:
i.e
$58-54=4$ and
$4 \div 2=2$
Therefore, if 54 and 58 are divisible by 2, then their difference, i.e., 4 is also divisible by 2.

Question: A number is divisible by both 5 and 12. By which other number will that number be always divisible?

Solution:

The number is divisible by 5 and 12.
Since 5 and 12 are co-prime numbers so the number must be divisible by the product
$5 \times 12=60$.
So, the given number will always be divisible by 60 .

POINTS TO REMEMBER:

- Any set of numbers which do not have any other common factor other than 1 are called co-prime or relatively prime numbers.
- If a number is divisible by another number, then it is also divisible by each of the factors of that number.
- If a number is divisible by two co-prime numbers, then it is also divisible by their product.
- If two given numbers are divisible by a number, then their difference and sum is also divisible by that number.

ASSIGNMENT : From NCERT Ex 3.5 (Q3, Q4, Q5 ,Q6 ,Q10 ,Q11 and Q12). Do
these questions in Math notebook.
PRACTICE QUESTIONS : Do their answers in practice notebook.
A. State if the given statements are true or false .

1) If a given number is divisible by 3 , it is also divisible by 9 .
2) If a given number is divisible by 6 , it is also divisible by 3 .
3) Numbers divisible by 15 are also divisible by 3 and 5.
4) If a is a factor of b and c, then it is a factor of $(b-c)$.
5) If a number is divisible by 5 and 9 , it is always exactly divisible by 90.
B. Do prime factorisation of the following numbers :
i) $\mathbf{2 2 5}$
ii) 144
iii) 540
iv) 612
