

BAL BHARATI PUBLIC SCHOOL, PITAMPURA, DELHI – 110034

SUBJECT:- MATHEMATICS

CHAPTER:-2

TOPIC:- Polynomials

STEP 1:- GUIDELINES AND INTRODUCTION

Guidelines:

Dear students Kindly refer to the following notes/video links from the Chapter-"Polynomials" and thereafter do the questions in your math notebook.

Chapter2 – Part 1

LINK FOR THE CHAPTER: http://ncert.nic.in/textbook/textbook.htm?jemh1=2-15

INTRODUCTION

Let us recall the concepts done in class IX

1) **Polynomial**: The expression, which contains one or more terms with non-zero coefficient is called a polynomial. A polynomial can have any number of terms. *For Example*: 25, p + q, 7x + y + 5, wx + xy + y z + zx etc. are some polynomials.

2) **Degree of polynomial**: The highest power of the variable in a polynomial is called as the degree of the polynomial.

For Example: The degree of $p(x) = x^5 - x^3 + 7$ is 5.

A polynomial of degree 1 is called a linear polynomial, degree 2 is called quadratic polynomial, degree 3 is called a cubic polynomial.

3) **Zeroes of a Polynomial**: The value of variable for which the polynomial becomes zero is called as the zeroes of the polynomial.

i.e. a real number **k** is said to be zero of a polynomial p(x) if p(k) = 0

For Example: Consider p(x) = x + 2. Find zeroes of this polynomial. If we put x = -2 in p(x), we get, p(-2) = -2 + 2 = 0. Thus, -2 is a zero of the polynomial p(x).

STEP 2:

Subtopic:

- (i) Geometrical Meaning of zeroes of a polynomial
- (ii) Relationship between zeroes and coefficients of a polynomial

(iii) Forming a polynomial, given its zeroes

STEP 3: Key Points and important link for references:

(i) Geometrical Meaning of the Zeroes of a Polynomial

Graph of a linear polynomial ax + b is a straight line. (i)

Refer to the link for zeroes of linear polynomial https://www.youtube.com/watch?v=XAuAH64puJU

(ii) Graph of a quadratic polynomial $p(x) = ax^2 + bx + c$ is a parabola open upwards if a > 0.

Graph of a quadratic polynomial $p(x) = ax^2 + bx + c$ is a parabola open downwards,

if a < 0.

Refer to the link for the quadratic polynomial

https://www.youtube.com/watch?v=s-AlezS1ByQ

Refer to the following link for other polynomials

https://www.youtube.com/watch?v=bSzmfUdBp2w

https://www.youtube.com/watch?v=Xz5gXe2Ok-0

<u>Q1</u> Write the number of zeroes of the polynomial y = f(x) whose graph is given in the following figures:

fig (i)

fig (ii)

fig (i) has 3 zeroes

fig (ii) has no zeroes

(ii) Relationship Between Zeroes and Coefficients of a Polynomial

The general form of linear polynomial is p(x) = ax+b, its zero is $\frac{-b}{a}$. i.e. $x = \frac{-b}{a}$ or $\frac{-Constant term}{Coefficient of x}$

General form of quadratic polynomial is $ax^2 + bx + c$ where $a \neq 0$. There are two zeroes of quadratic polynomial.

Sum of zeroes = $\frac{-b}{a} = \frac{-\text{Coefficient of } x}{\text{Coefficient of } x^2}$

Product of zeroes = $\frac{c}{a}$ = $\frac{Constant term}{Coefficient of x^2}$

General form of cubic polynomial of $ax^3 + bx^2 + cx + d$ where $a \neq 0$. There are three zeroes of cubic polynomial.

The sum of zeroes of the cubic polynomial = $\frac{-b}{a} = \frac{-\text{coefficient of } x^2}{\text{Coefficient of } x^3}$

Sum of the product of zeroes taken two at a time = $\frac{c}{a} = \frac{\text{coefficient of } x}{\text{Coefficient of } x^3}$

 $\label{eq:product} \text{Product of zeroes} = \frac{-d}{a} = \frac{-\text{Constant term}}{\text{Coefficient of } x^3} \ .$

https://www.youtube.com/watch?time_continue=139&v=cmrKOQJ3hTE&feature=emb_lo go

Example 2: Find the zeroes of the quadratic polynomial $x^2 + 7x + 10$, and verify the relationship between the zeroes and the coefficients.

Solution : We have

 $x^2 + 7x + 10 = (x + 2)(x + 5)$

So, the value of $x^2 + 7x + 10$ is zero when x + 2 = 0 or x + 5 = 0, i.e., when x = -2 or x = -5. Therefore, the zeroes of $x^2 + 7x + 10$ are -2 and -5. Now,

sum of zeroes =
$$-2 + (-5) = -(7) = \frac{-(7)}{1} = \frac{-(\text{Coefficient of } x)}{\text{Coefficient of } x^2}$$

product of zeroes = $(-2) \times (-5) = 10 = \frac{10}{1} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$

(iii) Forming a polynomial, given its zeroes

- (a) A quadratic polynomial whose zeroes are α and β , is given by : $p(x) = k[x^2 - (\alpha + \beta)x + \alpha\beta]$, where k is any real number
- (b) A quadratic polynomial whose zeroes are α, β and γ, is given by : P(x) = k[x³ - (α+β+γ)x² + (αβ+βγ+αγ)x - αβγ], where k is any real number

Example 2: Find the quadratic polynomial with the sum of the zeroes as 2 and the product of the zeroes as -6.

Solution :A quadratic polynomial whose zeroes are α and β , is given by :

 $p(x)=k[|x|^2-(\alpha+\beta)|x+\alpha|\beta] \quad , \mbox{ where } k \mbox{ is any real number} \\ here \ \alpha+\beta=2 \mbox{ and } \alpha\ \beta=-6$

So, the required equation is $k[x^2 - 2x - 6]$, where k is any real number.

STEP 4 : Points to Remember:

- 1) For finding the zeroes of the polynomial p(x), we put p(x) = 0.
- 2) On the graph if the curve is
 - (a) Intersecting the axis, it gives one zero
 - (b) Touching the axis, it gives two equal zeroes
 - (c) No point of intersection implies no zero
- 3) To find the total number of zeroes of the polynomial y = p(x) geometrically, the number of zeroes is equal to the total number of distinct points where the curve meets the x axis
- 4) If the zeroes of the polynomial are given, then we will find the sum (α + β) and product (α β) of the zeroes and substitute and find the polynomial p(x) = k[x²-(α + β) x + α β] , where k is any real number.

ASSIGNMENT

1) Do NCERT Ex 2.1 and Ex 2.2 (to be done in cw/hw register)

(Q2 to Q5 of the assignment to be done in practice register)

- If the product of zeroes of the polynomial ax² 6x 6 is 4, find the value of 'a'.
- If one zero of the polynomial (a² + 9) x² + 13x + 6a is the reciprocal of the other, find the value of 'a'.

(Hint : take the zeroes as α and $1/\alpha$, then find the product of the zeroes)

- 4) Find the zeroes of the quadratic polynomial $6x^2 3 7x$ and verify the relationship between the zeroes and the coefficient of the polynomial.
- 5) Find the quadratic polynomial, the sum of whose zeroes is 8 and their product is 12. Hence, find the zeroes of the polynomial.

NOTE

1. Refer to the following links to practice more questions:

a)

https://diksha.gov.in/play/content/do_312795704618844160111633?referrer=utm_source %3Ddiksha_mobile%26utm_content%3Ddo_312796455240941568116824%26utm_cam paign%3Dshare_content

b) From Khan Academy Assignments

https://www.khanacademy.org/math/in-in-grade-10-ncert

- c) www.examfear.com
- d) http://www.ei-india.com/mindspark-math (free trial for 60 days)