## Chemical Equations and Stoichiometry

$\mathrm{MnO}_{2}+4 \mathrm{HCI} \rightarrow \mathrm{MnCI}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CI}_{2}$
The quantitative information drawn from the above balanced chemical equation is

- The molar ratio in which the two reactants $\left(\mathrm{MnO}_{2}\right.$ and HCI$)$ are reacting is $1: 4$.
- The molar ratio between two products can also be known i.e. moles of $\mathrm{H}_{2} \mathrm{O}$ produced would be double the moles of $\mathrm{MnCI}_{2}$ produced.
Remember we can start the reaction with $\mathrm{MnO}_{2}$ and HCI taken in any molar ratio, but the moles of two reacting will always be in the molar ratio of 1:4.
- The balanced chemical equation should follow the law of conservation of mass.
stoichiometric problems can be solved in just four simple steps:

1. Balance the equation.
2. Convert units of a given substance to moles.
3. Using the mole ratio, calculate the moles of substance yielded by the reaction.
4. Convert moles of wanted substance to desired units.
https://www.youtube.com/watch?v= XnfATaoubzA
for calculation
https://www.youtube.com/watch?v= rESzyhPOJ7I
https://youtu.be/nZOVR8EMwRU
explains limiting reactant
Some more links
https://www.youtube.com/
https://www.youtube.com/watch?
v=Xu-rRFPROhM

## https://www.youtube.com/watch?

## $\mathrm{v}=\mathbf{S 6}$

Graphic organizer : shows students how to solve stoichiometry problems using a graphic organizer.

this process includes writing a balanced equation, identifying the known and unknown substances, selecting the correct mole ratio, determining the path to a solution

## Example 1

## Moles of Reactant Required in a Reaction

How many moles of $\mathrm{I}_{2}$ are required to react with 0.429 mol of Al according to the following equation

$$
2 \mathrm{Al}+3 \mathrm{I}_{2}----------\rightarrow 2 \mathrm{AlI}_{3}
$$

## Solution

Referring to the balanced chemical equation, the stoichiometric factor relating the two substances of interest is

$$
\frac{3 \mathrm{~mol} \mathrm{I}_{2}}{2 \mathrm{~mol} \mathrm{Al}} .
$$

The molar amount of iodine is derived by multiplying the provided molar amount of aluminum by this factor:

$\mathrm{mol} \mathrm{I} \quad 0.429 \mathrm{~mol} \mathrm{Al} \times \frac{3 \mathrm{~mol} \mathrm{I}}{2} 2 \mathrm{~mol} \mathrm{Al}$

### 0.644 mol I 2

## Example 2

## Number of Product Molecules Generated by a Reaction

How many carbon dioxide molecules are produced when 0.75 mol of propane is combusted according to this equation?

$$
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O} 2-----------\rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

Solution, though the absolute number of molecules is requested, not the number of moles of molecules. This will simply require use of the moles-to-numbers conversion factor, Avogadro's number.

The balanced equation shows that carbon dioxide is produced from propane in a 3:1 ratio:

$$
\frac{3 \text { mol } \mathrm{CO}_{2}}{1 \text { monl } \mathrm{C}_{3} \mathrm{H}_{3}}
$$

Using this stoichiometric factor, the provided molar amount of propane, and Avogadro's number,


## Example 3

## Relating Masses of Reactants and Products

What mass of sodium hydroxide, NaOH , would be required to produce 16 g of the antacid milk of magnesia [magnesium hydroxide, $\mathrm{Mg}(\mathrm{OH})_{2}$ ] by the following reaction?

$$
\mathrm{MgCl}_{2}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq})------\rightarrow \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{NaCl}(\mathrm{aq})
$$

## Solution

we must derive an appropriate stoichiometric factor from the balanced chemical equation and use it to relate the amounts of the two substances of interest. In this case, however, masses (not molar amounts) are provided and requested, so additional steps of the sort learned in the previous chapter are required. The calculations required are outlined in this flowchart:


## Example 4

## Relating Masses of Reactants

What mass of oxygen gas, $\mathrm{O}_{2}$, from the air is consumed in the combustion of 702 g of octane, $\mathrm{C}_{8} \mathrm{H}_{18}$, one of the principal components of gasoline?

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{O}_{2}-\cdots-----\rightarrow 16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O}
$$

## Solution

The approach required here is the same as for the Example 3, differing only in that the provided and requested masses are both for reactant species.


$$
702 \mathrm{~g}_{8} \mathrm{CH}_{8} \mathrm{I} \times \frac{1 \mathrm{~mol} \mathrm{ChH}_{18}}{114.23 \mathrm{~g}_{8} \mathrm{H}_{18}} \times \frac{25 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{molCH}_{18}} \times \frac{32.00 \mathrm{~g} \mathrm{O}_{2}}{\mathrm{~mol}_{2}}=2.46 \times 10^{3} \mathrm{~g} \mathrm{O}_{2}
$$

Figure 3. Airbags deploy upon impact to minimize serious injuries to passengers. (credit: Jon Seidman)

## LIMITING REACTANT

Hands-On Manipulative Activity/ analogy method : students can use a hands-on manipulative (beads ) to represent the stoichiometric relationships in a compound and in a balanced equation. They will determine the limiting reactant for a given amount of two reactants and they will identify the excess reactant.

Consider another food analogy, making grilled cheese sandwiches :
1 slice of cheese +2 slices of bread $\rightarrow 1$ sandwich

Stoichiometric amounts of sandwich ingredients for this recipe are bread and cheese slices in a 2:1 ratio. Provided with 28 slices of bread and 11 slices of cheese, one may prepare 11 sandwiches per the provided recipe, using all the provided cheese and having six slices of bread left over. In this scenario, the number of sandwiches prepared has been limited by the number of cheese slices, and the bread slices have been provided in excess.


## Identifying the Limiting Reactant

## Example 1

Silicon nitride is a very hard, high-temperature-resistant ceramic used as a component of turbine blades in jet engines. It is prepared according to the following equation:

$$
3 \mathrm{Si}(\mathrm{~s})+2 \mathrm{~N}_{2}(\mathrm{~g}) \longrightarrow \mathrm{Si}_{3} \mathrm{~N}_{4}(\mathrm{~s})
$$

Which is the limiting reactant when 2.00 g of Si and 1.50 g of $\mathrm{N}_{2}$ react?

## Solution

Compute the provided molar amounts of reactants, and then compare these amounts to the balanced equation to identify the limiting reactant.

$$
\begin{gathered}
\mathrm{mol} \mathrm{Si}=2.00 \% \mathrm{Si} \times \frac{1 \mathrm{~mol} \mathrm{Si}}{28.09 \mathrm{Si}}=0.0712 \mathrm{~mol} \mathrm{Si} \\
\mathrm{~mol} \mathrm{~N}_{2}=1.50 \% \mathrm{~N}_{2} \times \frac{1 \mathrm{mil}_{2}}{28.09-\mathrm{N}_{2}}=0.0535 \mathrm{~mol} \mathrm{~N}
\end{gathered}
$$

The provided $\mathrm{Si}: \mathrm{N}_{2}$ molar ratio is:

$$
\frac{0.0712 \mathrm{~mol} \mathrm{Si}}{0.0535 \mathrm{~mol} \mathrm{~N}_{2}}=\frac{1.33 \mathrm{~mol} \mathrm{Si}}{1 \mathrm{~mol} \mathrm{~N}_{2}}
$$

The stoichiometric $\mathrm{Si}: \mathrm{N}_{2}$ ratio is:

$$
\frac{3 \mathrm{~mol} \mathrm{Si}}{2 \mathrm{~mol} \mathrm{~N}}=\frac{1.5 \mathrm{~mol} \mathrm{Si}}{1 \mathrm{~mol} \mathrm{~N}_{2}}
$$

Comparing these ratios shows that Si is provided in a less-thanstoichiometric amount, and so is the limiting reactant.

## Example 2

Nitrogen reacts with hydrogen to form ammonia. Represent each nitrogen atom by a circle and each hydrogen atom by a square. Starting with SIX molecules of both nitrogen and hydrogen, show pictorially what you have after the reaction is completed.


Nitrogen
hydrogen
ammonia
excess nitrogen

## Thus we can conclude that

The reactant which is completely consumed when a reaction goes to completion and which decides the yield of the product is called limiting reagent.

## Practice Problems: Stoichiometry coefficient

# Q1 Problem: Given the following equation at STP: $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})$ 

## Determine what volume of $\mathrm{H}_{2}(\mathrm{~g})$ is needed to produce 224 L of $\mathrm{NH}_{3}(\mathrm{~g})$.

## Q2 How many atoms of oxygen do I need in order to get 18 g of ice?

Given the following reaction:

$$
2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~s})
$$

Q3 Problem : $2 \mathrm{Al}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{AlCl}_{3}$
When 80 grams of aluminum is reacted with excess chlorine gas, how many formula units of $\mathrm{AlCl}_{3}$ are produced?

Q4 Problem : $\mathrm{Sb}_{2} \mathrm{~S}_{3}(\mathrm{~s})+3 \mathrm{Fe}(\mathrm{s}) \rightarrow 2 \mathrm{Sb}(\mathrm{s})+3 \mathrm{FeS}(\mathrm{s})$
If $3.87 \times 10^{*}$ particles of $\mathrm{Sb}_{2} \mathrm{~S}_{3}(\mathrm{~s})$ are reacted with excess
$\mathrm{Fe}(\mathrm{s})$, what mass of $\mathrm{FeS}(\mathrm{s})$ is produced?
Q5. Problem : $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$

At STP, what volume of $\mathrm{H}_{2}(\mathrm{~g})$ is needed to react completely with $8.02 \times 10^{*}$ molecules of $\mathrm{CO}(\mathrm{g})$ ?

## Practice Problems: Limiting Reagents

1. Take the reaction: $\mathrm{NH}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$. In an experiment, 3.25 g of $\mathrm{NH}_{3}$ are allowed to react with 3.50 g of $\mathrm{O}_{2}$.
a. Which reactant is the limiting reagent?
b. How many grams of NO are formed?
c. How much of the excess reactant remains after the reaction?
2. If 4.95 g of ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ are combusted with 3.25 g of oxygen.
a. What is the limiting reagent?
b. How many grams of $\mathrm{CO}_{2}$ are formed?
