SUBJECT:- MATHEMATICS

CLASS:VIII CHAPTER:-6

TOPIC:- SQUARE AND SQUARE ROOTS(Part 3)

GUIDELINES

Dear students kindly refer to the following notes/video links for the Chapter- "SQUARE AND SQUARE ROOTS"(part3) and thereafter attempt the questions in your Mathematics notebook.

NOTE- Students can download NCERT book using the following link:-
http://ncert.nic.in/textbook/textbook.htm?hemh1=0-16

INTRODUCTION

Finding square root through prime factorisation

Consider the prime factorisation of the following numbers and their squares.

Prime Factorisation of a number and Prime Factorisation of its Square

Prime factorisation of a Number	Prime factorisation of its Square
$6=2 \times 3$	$36=2 \times 2 \times 3 \times 3$
$8=2 \times 2 \times 2$	$64=2 \times 2 \times 2 \times 2 \times 2 \times 2$
$12=2 \times 2 \times 3$	$144=2 \times 2 \times 2 \times 2 \times 3 \times 3$
$15=3 \times 5$	$225=3 \times 3 \times 5 \times 5$

How many times does 2 occur in the prime factorisation of 6? Once. How many times does 2 occur in the prime factorisation of 36 ? Twice.

You will find that each prime factor in the prime factorisation of the square of a number occurs twice the number of times it occurs in the prime factorisation of the number itself. Let us use this to find the square root of a given square number, say 324.
We know that the prime factorisation of 324 is $324=2 \times 2 \times 3 \times 3 \times 3 \times 3$
By pairing the prime factors, we get

2	324
	162
	81
3	27
	9
	3

$$
324=\underline{2 \times 2} \times \underline{3 \times 3} \times \underline{3 \times 3}=2^{2} \times 3^{2} \times 3^{2}=(2 \times 3 \times 3)^{2}
$$

So, $\quad \sqrt{324}=2 \times 3 \times 3=18$
Similarly can you find the square root of 256 ?
Prime factorization of 256 is $\quad 256=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$
By pairing the prime factors we get,
$256=\underline{2 \times 2} \times \underline{2 \times 2} \times \underline{2 \times 2} \times \underline{2 \times 2}=(2 \times 2 \times 2 \times 2)^{2}$
Therefore $\sqrt{256}=2 \times 2 \times 2 \times 2=16$

2	256
2	128
2	64
2	32
2	16
2	8
2	4
	2

SUBTOPICS

1) Calculating square root of given numbers by prime factorization
2) Number of digits in square and square root of a given number

Key points and important links for reference

1) Prime factorisation method to find square root

Example : Find the square root of 6400 .
Solution: Write $6400=\underline{2 \times 2} \times \underline{2 \times 2} \times \underline{2 \times 2} \times \underline{2 \times 2} \times \underline{5 \times 5}$
Therefore $\quad \sqrt{6400}=2 \times 2 \times 2 \times 2 \times 5=80$
Example : Is 90 a perfect square?
Solution: We have $90=2 \times 3 \times 3 \times 5$

2	90
3	45
3	15
	5

The prime factors 2 and 5 do notoccur in pairs. Therefore, 90 is not a perfect square.
That 90 is not a perfect square can also be seen from the fact that it has only one zero.
Example :Is 2352 aperfect square? If not, find the smallest multiple of 2352 which is a perfect square. Find the square root of the new number.

Solution: We have $2352=\underline{2 \times 2} \times \underline{2 \times 2} \times 3 \times \underline{7 \times 7}$
As the prime factor 3 has no pair, 2352 is not a perfect square.
If 3 gets a pair then the number will become perfect square. So, we multiply 2352 by 3 to get,

$$
2352 \times 3=\underline{2 \times 2} \times \underline{2 \times 2} \times \underline{3 \times 3} \times \underline{7 \times 7}
$$

Now each prime factor is in a pair. Therefore, $2352 \times 3=7056$ is a perfect square. Thus the required smallest multiple of 2352 is 7056 which is a perfect square.

588 294
147
49

7
And,

$$
\sqrt{7056}=2 \times 2 \times 3 \times 7=84
$$

Example : Find the smallest number by which 9408 must be divided so that the quotient is a perfect square. Find the square root of the quotient.

Solution: We have, $9408=\underline{2 \times 2} \times \underline{2 \times 2} \times \underline{2 \times 2} \times 3 \times \underline{7 \times 7}$ If we divide 9408 by the factor 3 , then $9408 \div 3=3136=\underline{2 \times 2} \times \underline{2} \times 2 \times \underline{2} \times 2 \times \underline{7 \times 7}$ which is a perfect square. Therefore, the required smallest number is 3 .
And,

$$
\sqrt{3136}=2 \times 2 \times 2 \times 7=56 .
$$

2	$6,9,15$
3	$3,9,15$
3	$1,3,5$
5	$1,1,5$
	$1,1,1$

Example : Find the smallest squarenumberwhichis divisible by each of the numbers 6,9 and 15.
Solution: Thishas to bedone in two steps.First find the smallest commonmultiple and then find the squarenumberneeded. The leastnumber divisiblebyeach one of 6,9 and 15 is their LCM. The LCM of 6,9 and 15 is $2 \times 3 \times 3 \times 5=90$.
Prime factorisation of 90 is $90=2 \times \underline{3 \times 3} \times 5$.
We see that prime factors 2 and 5 are not in pairs. Therefore 90 is not a perfect square.

In order to get a perfect square, each factor of 90 must be paired. So we need to make pairs of 2 and 5 . Therefore, 90 should be multiplied by 2×5, i.e., 10 . Hence, the required square number is $90 \times 10=900$.

2) Number of digits in square and square root of a given number

https://www.youtube.com/watch?v=yFyMgGUVgig

Please click on the above link to understand the concept.

POINTS TO REMEMBER

1. If a natural number m can be expressed as n^{2}, where n is also a natural number, then m is a square number.
2. All square numbers end with $0,1,4,5,6$ or 9 at unit's place.
3. Square numbers can only have even number of zeros at the end.
4. Square root is the inverse operation of square.
5. There are two integral square roots of a perfect square number.

Positive square root of a number is denoted by the symbol $\sqrt{ }$.
For example, $3^{2}=9$ gives $\sqrt{9}=3$

ASSIGNMENT

1) From NCERT textbook, the following questions are to be done in Mathematics notebook:
\{ EX 6.3 Q4i),iii),vii),viii),x)
Q5 i), iii), vi)
Q6 i),ii),iv)
Q8 and Q10 \}
2) Online Practice assignment on introduction to square roots (not to be done in notebook).
(i) https://www.khanacademy.org/math/algebra/x2f8bb11595b61c86:rational-
exponents-radicals/x2f8bb11595b61c86:radicals/e/roots-of-decimals-and-fractions
(ii)https://www.khanacademy.org/math/algebra/x2f8bb11595b61c86:rational-exponents-radicals/x2f8bb11595b61c86:simplifying-square-roots/e/multiplying radicals
3) Objective type questions (to be done in a separate Mathematics practice notebook.)

1196 is the square of
(a) 11
(b) 12
(c) 14
(d) 16

2 Which of the following is a square of an even number?
(a) 144
(b) 169
(c) 441
(d) 625

3 Which of the following will have 4 at the units place?
(a) 14^{2}
(b) 62^{2}
(c) 27^{2}
(d) 35^{2}

4 How many natural numbers lie between 5^{2} and 6^{2} ?
(a) 9
(b) 10
(c) 11
(d) 12

7 There are \qquad natural numbers between n^{2} and $(n+1)^{2}$

8 The square root of 24025 will have \qquad digits.
9 The square root of 0.9 is 0.3 . T/F
10 The square of every natural number is always greater than the number itself. T/F

