BAL BHARATI PUBLIC SCHOOL, PITAMPURA, DELHI – 110034

SUBJECT:- MATHEMATICS

CLASS:VIII CHAPTER:-6

TOPIC:- SQUARE AND SQUARE ROOTS(Part 3)

GUIDELINES

Dear students kindly refer to the following notes/video links for the Chapter- "SQUARE AND SQUARE ROOTS" (part3) and thereafter attempt the questions in your Mathematics notebook.

NOTE- Students can download NCERT book using the following link:-

http://ncert.nic.in/textbook/textbook.htm?hemh1=0-16

INTRODUCTION

Finding square root through prime factorisation

Consider the prime factorisation of the following numbers and their squares.

Prime Factorisation of a number and Prime Factorisation of its Square

Prime factorisation of a Number	Prime factorisation of its Square
$6 = 2 \times 3$	$36 = 2 \times 2 \times 3 \times 3$
$8 = 2 \times 2 \times 2$	$64 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$
$12 = 2 \times 2 \times 3$	$144 = 2 \times 2 \times 2 \times 2 \times 3 \times 3$
$15 = 3 \times 5$	$225 = 3 \times 3 \times 5 \times 5$

How many times does 2 occur in the prime factorisation of 6?

Once. How many times does 2 occur in the prime factorisation of 36?

Twice.

You will find that each prime factor in the prime factorisation of the square of a number occurs twice the number of times it occurs in the prime factorisation of the number itself. Let us use this to find the square root of a given square number, say 324.

We know that the prime factorisation of 324 is $324 = 2 \times 2 \times 3 \times 3 \times 3 \times 3$ By pairing the prime factors, we get

$$324 = 2 \times 2 \times 3 \times 3 \times 3 \times 3 = 2^2 \times 3^2 \times 3^2 = (2 \times 3 \times 3)^2$$

So,
$$\sqrt{324} = 2 \times 3 \times 3 = 18$$

Similarly can you find the square root of 256?

Prime factorization of 256 is 256 =

By pairing the prime factors we get,

$$256 = 2 \times 2 = (2 \times 2 \times 2 \times 2)^{2}$$

Therefore $\sqrt{256} = 2 \times 2 \times 2 \times 2 = 16$

2	324
2	162
3	81
3	27
3	9
	3

SUBTOPICS

- 1) Calculating square root of given numbers by prime factorization
- 2) Number of digits in square and square root of a given number

Key points and important links for reference

1) Prime factorisation method to find square root

Example: Find the square root of 6400.

Solution: Write $6400 = \underline{2 \times 2} \times \underline{2 \times 2} \times \underline{2 \times 2} \times \underline{2 \times 2} \times \underline{5 \times 5}$ $\sqrt{6400} = 2 \times 2 \times 2 \times 2 \times 5 = 80$ Therefore

Example: Is 90 a perfect square?

Solution: We have $90 = 2 \times 3 \times 3 \times 5$

The prime factors 2 and 5 do not occur in pairs. Therefore, 90 is not a perfect square. That 90 is not a perfect square can also be seen from the fact that it has only one zero.

Example: Is 2352 aperfect square? If not, find the smallest multiple of 2352 which is a perfect square. Find the square root of the new number.

Solution: We have $2352 = 2 \times 2 \times 2 \times 2 \times 3 \times 7 \times 7$

As the prime factor 3 has no pair, 2352 is not a perfect square.

If 3 gets a pair then the number will become perfect square. So, we multiply 2352 by 3 to get,

$$2352 \times 3 = \underline{2 \times 2} \times \underline{2 \times 2} \times \underline{3 \times 3} \times \underline{7 \times 7}$$

3

45

15

2 6400

2 1600

2 800

3200

400

200

100 50

25

588

294

147

49

2

2

Now each prime factor is in a pair. Therefore, $2352 \times 3 = 7056$ is a perfect square. Thus the required smallest multiple of 2352 is 7056 which is a perfect square.

 $\sqrt{7056} = 2 \times 2 \times 3 \times 7 = 84$ And,

Example: Find the smallest number by which 9408 must be divided so that the quotient is a perfect square. Find the square root of the quotient.

Solution: We have, $9408 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 7 \times 7$ If

we divide 9408 by the factor 3, then

 $9408 \div 3 = 3136 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 7 \times 7$ which is a perfect square.

Therefore, the required smallest number is 3.

And,
$$\sqrt{3136} = 2 \times 2 \times 2 \times 7 = 56$$
.

3 1, 3, 5 5 1. 1. 5 1, 1, 1

6, 9 and 15. Solution: This has to be done in two steps. First find the smallest common multiple and

then find the square number needed. The least number divisible by each one of 6, 9 and 15 is their LCM. The LCM of 6, 9 and 15 is $2 \times 3 \times 3 \times 5 = 90$.

Prime factorisation of 90 is $90 = 2 \times 3 \times 3 \times 5$.

We see that prime factors 2 and 5 are not in pairs. Therefore 90 is not a perfect square.

In order to get a perfect square, each factor of 90 must be paired. So we need to make pairs of 2 and 5. Therefore, 90 should be multiplied by 2 × 5, i.e., 10. Hence, the required square number is $90 \times 10 = 900$.

Please click on the links given below for a better understanding of the above concepts.

https://www.youtube.com/watch?v=Yl2WpSK_5v8
https://www.youtube.com/watch?v=aP9pxJBQ4Ak

2) Number of digits in square and square root of a given number

https://www.youtube.com/watch?v=yFyMgGUVgig

Please click on the above link to understand the concept.

POINTS TO REMEMBER

- **1.** If a natural number m can be expressed as n^2 , where n is also a natural number, then m is a square number.
- 2. All square numbers end with 0, 1, 4, 5, 6 or 9 at unit's place.
- 3. Square numbers can only have even number of zeros at the end.
- **4. Square root** is the inverse operation of square.
- **5.** There are two integral square roots of a perfect square number.

Positive square root of a number is denoted by the symbol $\sqrt{}$.

For example, $3^2 = 9$ gives $\sqrt{9} = 3$

ASSIGNMENT

1) From NCERT textbook, the following questions are to be done in Mathematics notebook:

```
{ EX 6.3 Q4i),iii),vii),viii),x)
Q5 i), iii), vi)
Q6 i),ii),iv)
Q8 and Q10 }
```

- 2) Online Practice assignment on introduction to square roots (not to be done in notebook).
 - (i) https://www.khanacademy.org/math/algebra/x2f8bb11595b61c86:rational-exponents-radicals/x2f
 - (ii) https://www.khanacademy.org/math/algebra/x2f8bb11595b61c86:rational-exponents-radicals/x2f8bb11595b61c86:simplifying-square-roots/e/multiplying_radicals

3)	Obje	ctive type que	stio	ns (to be done	in a	separate Math	ema	tics practice notebook.)		
1	196	is the square	e of							
	(a)	11	(b)	12	(c)	14	(d)	16		
2	Wh	ich of the foll	owin	g is a square	of a	n even numb	er?			
	(a)	144	(b)	169	(c)	441	(d)	625		
3	Wh	ich of the foll	ouzir	or will have 4	at t	he units plac	e?			
3		14^2		62^2		27 ²		35^{2}		
4						en 5 ² and 6 ² ?				
	(a)			10		11		12		
7 T	here	are	nat	ural numbers	bet	ween n² and (1	1 + 1)2		
8 T	he s	quare root of	2402	5 will have _		digits.				
9 T	he s	quare root of (0.9 is	s 0.3. T/F		- 1,5				
	he so self.	•	natu	ral number is	alwa	ys greater tha	n the	number		
