BAL BHARATI PUBLIC SCHOOL, PITAMPURA, DELHI - 110034

SUBJECT:- MATHEMATICS

CHAPTER:-6

TOPIC:- Exponents and Powers(Part1)

GUIDELINES

Dear students, kindly refer to the following notes/video links for the Chapter"EXPONENT AND POWERS " and thereafter attempt the questions in Mathematics notebook.

NOTE- Students can download the NCERT book using the following link:
http://ncert.nic.in/textbook/textbook.htm?hemh1=0-16

INTRODUCTION

We know how to calculate the expression 5×5. This expression can be written in a shorter way using something called exponents.

$$
5 \times 5=5^{2}
$$

An expression that represents repeated multiplication of the same factor is called a power. The number 5 is called the base, and the number 2 is called the exponent.

| $3^{1} 3$ to the power 1 | 3 |
| :--- | :--- | :--- |
| $4^{2} 4$ to the power 2 | 4×4 |
| $5^{3} 5$ to the power 3 | $5 \times 5 \times 5$ |
| $2^{6} 2$ to the power 6 | $2 \times 2 \times 2 \times 2 \times 2 \times 2$ |

In mathematics, we use superscripts to represent the number of times the number is multiplied by itself. These superscripts are the exponents.
$2 \times 2 \times 2=2^{10}=1,024$
$a \times a \times a=a^{10}$

Exponents shorten writing out long strings of repeated multiplication.
For example, $3 \times 2 \times 2 \times 3 \times 3 \times 2 \times 2=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3=2^{4} 3^{3}$.
In the expression a^{n}, we are saying that \mathbf{a} is being multiplied by itself \mathbf{n} number of times. We call a the base, and \mathbf{n} is the exponent. The expression a^{n} is called a power, and is read as, "a raised to the power of \mathbf{n} " or "a to the nth power." In my above example of $2^{10}, 2$ is the base, 10 is the exponent (the number of times 2 is multiplied by itself), and we read it as "2 raised to the 10th power" . Some powers are special because they come up quite frequently like a^{2} can also be read as "asquared," and a^{3} as "a-cubed."

SUBTOPICS

1) Powers with positive exponents
2) Powers with negative exponent
3) Expansion of decimal numbers
4) Laws of exponents

IMPORTANT POINTS WITH THEIR LINKS FOR REFERENCE

1) Introduction
https://www.examfear.com/free-video-lesson/Class-8/Maths/Exponents-and-
Powers/part-1.htm
2) What are exponents
https://www.youtube.com/watch?v=4qHe68w4Nul\&feature=emb rel end
3) Negative exponent
https://www.youtube.com/watch?v=rwFgnRss-do
4) Expansion of large numbers
https://www.youtube.com/watch?v=yvSyObj59Pk
5) laws of exponents
https://www.youtube.com/watch?v=bLCtYNIdw4E
6) some examples for reference
https://www.youtube.com/watch?v=S4BbEDuMnAU

POINTS TO REMEMBER

1) $x^{1}=x$. Any number raised to the power of " 1 " equals itself.
2) $x^{0}=1$. Any non-zero number raised to the power 0 equal to 1 .
3) $x^{-1}=1 / x$. Any non-zero number raised to a negative power equals its reciprocal raised to the same but positive power .
4) $x^{m} x^{n}=x^{m+n}$. When multiplying 2 powers that have the same base, you can add the exponents.
5) $\quad x^{m} / x^{n}=x^{m-n}$. Divide 2 powers with the same base by subtracting the exponents.
6) $\quad\left((x)^{m}\right)^{n}=(x)^{m n}$. Multiply the powers when the power is raised by another power.
7) $\quad(x y)^{m}=x^{m} y^{m}$

$$
\frac{x^{m}}{y^{m}}=\left(\frac{x}{y}\right)^{m}
$$

Some important points to remember

- Follow the order of operations .
- Remember that exponents are repeated multiplication. 2^{3} is not the same as 2×3 ! It means $2 \times 2 \times 2$.
- Be careful evaluating exponents with negative bases. Use parenthesis when necessary to help you remember.
- Negative exponents are the same as repeated division of one by a number.
- Negative exponents don't make a number negative ie $.2^{-3}=1 / 2^{3}=1 / 8=$ 0.125 , not -8 .

ASSIGNMENT

1). From NCERT textbook the following questions are to be

 done in Mathematics notebook:
Exercise 12.1

\{ Q1.(I) (II)
Q2(I) (II) (IV)
Q3 (I) (II) (IV)
Q6 (I) and Q7. (II) \}
2) Practice assignment on Exponents and Powers (for online practice only).

1 https://www.khanacademy.org/math/in-in-class-8th-math-
cbse/xa9e4cdc50bd97244:in-in-8th-exp-powers/xa9e4cdc50bd97244:in-in-8th-exp-
negative-exponents/e/exponents 2?modal=1
2https://www.khanacademy.org/math/in-in-class-8th-math-cbse/xa9e4cdc50bd97244:in-in-8th-exp-powers/xa9e4cdc50bd97244:in-in-8th-exp-negative-exponents/e/exponent rules?modal=1

3https://www.khanacademy.org/math/in-in-class-8th-math-cbse/xa9e4cdc50bd97244:in-in-8th-exp-powers/xa9e4cdc50bd97244:in-in-8th-exp-negative-exponents/e/powers-of-powers-int-exp?modal=1
3) Objective type questions (to be done in a separate Mathematics practice notebook)

Q1. What is the value of 2^{-5} ?
Q2. Multiplicative inverse of 2^{-7} is
A) 2^{-7}
B) 7^{2}
C) 2^{7}
D) 7^{-2}

Q3. $\quad \ln 2^{n}, n$ is known as
A)base
B) constant
C) exponent
D) none of the above

Q4. The value of $3^{5} / 3^{-6}$ is
A) 3^{5}
B) 3^{-6}
C) 3^{11}
D) 3^{-1}

Q5. If y be any non zero integer, the y^{0} is equal to
A) 1
B) 0
C) -1
D) not defined

Q6. $\left[2^{-1}+3^{-1}+4^{-1}\right]^{0}=$ \qquad
Q7. What is the value of $4^{0}--3^{3}$?
Q8. What is the value of $(-3)^{4}$
Q9. On dividing 8^{5} by \qquad we get 8 .
Q10. The value for $(-7)^{6} / 7^{6}$ is \qquad .
Q11. True/False:
A) $(-2)^{0}=2$
B) $\quad(-7)^{-4} \times(-7)^{2}=(-7)^{-2}$
C) $\quad a^{2}=\frac{1}{(a)-2}$
D) The expression of 4^{-3} as a power with base 2 is 2^{6}.

