BAL BHARATI PUBLIC SCHOOL , PITAMPURA
 Class -9 Mathematics
 POLYNOMIALS (Part - 5)

Guidelines:

Dear Students
Kindly read the content given below and view the links shared for better understanding.

- Solve the given questions in the yellow register provided in the notebook set.

Link for the chapter : http://ncert.nic.in/textbook/textbook.htm?jemh1=3-15

Introduction :

In this lesson we will learn " Remainder Theorem "

When you divide one polynomial by another using the long division method described in previous lesson, the process can be very long. The Remainder and Factor Theorems help us avoid this long division process by providing certain rules. We will learn about the Remainder Theorem in this lesson.

Remainder theorem: Let $p(x)$ be any polynomial of degree greater than or equal to 1 and let a be any real number. If $p(x)$ is divided by the linear polynomial $x-a$, then the remainder is $p(a)$.

Example 1: Find the remainder when $p(x)=x^{4}+x^{3}-2 x^{2}+x+1$ is divided by x-1.

Solution: Zero of $x-1$ is 1 , so by using remainder theorem, remainder in this case will be $p(1)$.

So, $p(1)=(1) 4+(1)^{3}-2(1)^{2}+1+1=2$
(Note: $x-1=0$, therefore $x=1$)

Example 2: Find the remainder when $x^{4}+x^{3}-2 x^{2}+x+1$ is divided by $(x-1)$.

Solution : Dividend $=p(x)=x^{4}+x^{3}-2 x^{2}+x+1$ and Divisor $=x-1$

Zero of the divisor polynomial is $x-1=0$ or, $x=1$.

Therefore, $p(1)=(1)^{4}+(1)^{3}-2(1)^{2}+1+1=1+1-2+1+1=2$.

So, by using Remainder Theorem, the remainder is 2 .

Example 3: Find the remainder when $\left(x^{3}-a x^{2}+6 x-a\right)$ is divided by $(x-a)$.

Solution : Dividend Polynomial $=p(x)=x^{3}-a x^{2}+6 x-a$ and Divisor Polynomial $=x-a$

Zero of the divisor polynomial is $\mathrm{x}-\mathrm{a}=0$ or, $\mathrm{x}=\mathrm{a}$.

Therefore, $p(a)=(a)^{3}-a(a)^{2}+6 a-a=a^{3}-a^{3}+6 a-a=5 a$

So, by Remainder Theorem, the remainder is 5 a.

Key points and important links for reference :
Refer to this link to enhance your knowledge : https://examfear.com/free-video-lesson/Class-9/Maths/Polynomials/part-
9/Polynomials Part 9 (Remainder theorem).htm
Comparison showing division of polynomials by Long Division Method and by Remainder Theorem :
https://www.khanacademy.org/math/algebra2/x2ec2f6f830c9fb89:poly-div/x2ec2f6f830c9fb89:remainder-theorem/v/polynomial-remainder-theorem

Following questions are to be done in the register :

Exercise 2.3 Q1 (ii), (iv) (By Remainder Theorem)
Q2.

ASSIGNMENT :-

Note: Following questions are for practice only and should be done in a separate practice register/copy of maths

Use REMAINDER THEOREM to find remainder :

1. $\left(x^{2}+7 x+12\right) \div(x+3)$
2. $\left(15 x^{2}+26 x+8\right) \div(5 x+2)$
3. $\left(4 x^{2}+8 x-5\right) \div(2 x+1)$
4. $\left(x^{4}+3 x^{2}-6 x-10\right) \div\left(x^{2}+3 x-5\right)$
5. $\left(5 x^{3}-6 x^{2}-28 x-2\right) \div(x+2)$
6. $\left(x^{3}-1\right) \div(x-1)$

NOTE: Compare the answers of the questions you calculated using long division method in the previous lesson and answers of questions given above by using remainder theorem. You will find that answers we get from both the methods are the same.

