BAL BHARATI PUBLIC SCHOOL , PITAMPURA
Class -9 Mathematics
POLYNOMIALS (Part - 4)

Guidelines:

Dear Students
Kindly read the content given below and view the links shared for better understanding.

- Solve the given questions in the yellow register provided in the notebook set.

Link for the chapter : http://ncert.nic.in/textbook/textbook.htm?jemh1=3-15
Introduction : In this lesson we will learn " Division of Polynomials " (By long division method)

Let us consider two numbers 15 and 6 . You know that when we divide 15 by 6, we get the quotient 2 and remainder 3. Do you remember how this fact is expressed? We write 15 as
$15=(6 \times 2)+3$
We observe that the remainder 3 is less than the divisor 6 . Similarly, if we divide 12 by 6 , we get
$12=(6 \times 2)+0$
What is the remainder here? Here the remainder is 0 , and we say that 6 is a factor of 12 or 12 is a multiple of 6 .

Now, the question is: Can we divide one polynomial by another? To start with, let us try doing this when the divisor is a monomial. So, let us divide the polynomial $2 \mathrm{x}+\mathrm{x}^{2}+\mathrm{x}$ by the monomial x .

We have $\left(2 x^{3}+x^{2}+x\right) \div x=2 x^{3} / x+x^{2} / x+x / x=2 x^{2}+x+1$
In fact, you may have noticed that x is common to each term of $2 x^{3}+x^{2}+x$. So, we can write $2 x^{3}+x^{2}+x$ as $x\left(2 x^{2}+x+1\right)$

We say that x and $2 x^{2}+x+1$ are the factors of $2 x^{3}+x^{2}+x$ and $2 x^{3}+x^{2}+x$ is a multiple of x as well as a multiple of $2 x^{2}+x+1$.

We know that Dividend $=($ Divisor \times Quotient $)+$ Remainder
In general, if $p(x)$ and $g(x)$ are two polynomials such that degree of $p(x) \geq$ degree of $g(x)$ and $g(x) \neq 0$, then we can find polynomials $q(x)$ and $r(x)$ such that:
$p(x)=g(x) q(x)+r(x)$,
where $r(x)=0$ or degree of $r(x)<$ degree of $g(x)$. Here we say that $p(x)$ divided by $g(x)$, gives $q(x)$ as a quotient and $r(x)$ as a remainder.

Examples of Long division :

Example 1: Evaluate $\left(x^{2}+10 x+21\right) \div(x+7)$ using long division.

Solution :

$\left(x^{2}+10 x+21\right)$ is called the dividend and $(x+7)$ is called the divisor
Step 1: Divide the first term of the dividend with the first term of the divisor and write the result as the first term of the quotient.

$$
x + 7 \longdiv { x ^ { 2 } + 1 0 x + 2 1 }
$$

Step 2: Multiply that term with the divisor.

$$
\begin{gathered}
x + 7 \longdiv { x ^ { 2 } + 1 0 x + 2 1 } \\
x^{2}+7 x
\end{gathered}
$$

(Please note that x is getting multiplied by $(x+7)$ to get $\left(x^{2}+7 x\right)$
Step 3: Subtract and write the result to be used as the new dividend

$$
\begin{array}{r}
x + 7 \longdiv { x ^ { 2 } + 1 0 x + 2 1 } \\
\frac{x^{2}+7 x}{3 x+21}
\end{array}
$$

Step 4: Divide the first term of this new dividend by the first term of the divisor and write the result as the second term of the quotient.

$$
\begin{array}{r}
x + 7 \longdiv { x ^ { 2 } + 1 0 x + 2 1 } \\
\frac{x^{2}+7 x}{3 x+21}
\end{array}
$$

Step 5: Multiply that term and the divisor and write the result under the new dividends.

$$
\begin{array}{r}
x + 7 \longdiv { x ^ { 2 } + 1 0 x + 2 1 } \\
\frac{x^{2}+7 x}{3 x+21} \\
3 x+21
\end{array}
$$

Step 6: Subtract to get the remainder

$$
x + 7 \longdiv { x + 3 } \begin{array} { r }
{ \frac { x + 1 0 x + 2 1 } { x ^ { 2 } + 7 x } } \\
{ \frac { 3 x + 2 1 } { 3 x + 2 1 } } \\
{ 0 }
\end{array}
$$

Note : It is possible that the remainder of a polynomial division may not be zero.

Example 2: Evaluate $\left(23 y^{2}+20 y^{3}-13 y+9\right) \div\left(-3 y+5 y^{2}+2\right)$

Solution:

$$
\begin{array}{r}
5 y ^ { 2 } - 3 y + 2 \longdiv { 2 0 y ^ { 3 } + 2 3 y ^ { 2 } - 1 3 y + 9 } \\
\frac{20 y^{3}-12 y^{2}+8 y}{35 y^{2}-21 y+9} \\
\frac{35 y^{2}-21 y+14}{-5}
\end{array}
$$

(Please note that in dividend and divisor, we have to arrange the terms in descending powers)

In this example $p(x)=20 y^{3}+23 y^{2}-13 y+9$ (dividend)
$g(x)=5 y^{2}-3 y+2$ (divisor)
$q(x)=4 y+7$ (quotient)
$r(x)=-5$ (remainder $)$
Hence, $p(x)=g(x) q(x)+r(x)$, where $r(x)=0$ or degree of $r(x)<$ degree of $g(x)$.
Here, degree of $r(x)$ is 0 which is less than degree of $g(x)$ which is 2 .

Key points and important links for reference :

Refer to this link to enhance your knowledge :
https://www.youtube.com/watch?v=16 ghhd7kwQ

Example of division of polynomials : https://www.khanacademy.org/math/algebra-home/alg-polynomials/alg-long-division-of-polynomials/v/dividing-polynomials-1

For further reference : https://www.youtube.com/watch?v=FTRDPB1wR5Y

Following questions are to be attempted in the register :

Exercise 2.3 Q1: (i), (v)
Q2. $\left(5 x^{3}-6 x^{2}-28 x-2\right) \div(x+2)$
Q3. $\left(x^{3}-1\right) \div(x-1)$

ASSIGNMENT :-

Note : Following questions are for the practice only and should be done in a separate practice register/copy of maths

1. $\left(x^{2}+7 x+12\right) \div(x+3)$
2. $\left(15 x^{2}+26 x+8\right) \div(5 x+2)$
3. $\left(4 x^{2}+8 x-5\right) \div(2 x+1)$
4. $\left(x^{4}+3 x^{2}-6 x-10\right) \div\left(x^{2}+3 x-5\right)$
