
1

 MYSQL REVISION TOUR

Lesson Plan -1

Step 1: Learning Objectives:

To enable students to

• Understand the basic terminology of Database system

• Create their own database and table.

• Apply various SQL commands for solving queries

Step 2: Introduction:

• MYSQL - A freely available open source Relational Database Management System (RDBMS)
that uses Structured Query Language (SQL).

• SQL (Structured Query Language) - A language that enables you to create and operate
on relational databases, which are sets of related information stored in tables.

• DIFFERENT DATA MODELS

➢ A data model refers to a set of concepts to describe the structure of a database, and

certain constraints (restrictions) that the database should obey. The four data models that
are used for database management are :

1. Hierarchical data model

2. Relational data model

3. Network data model

4. Object Oriented data model

RELATIONAL MODEL TERMINOLOGY

1. Relation : A table storing logically related data is called a Relation.

2. Tuple : A row of a relation is generally referred to as a tuple.

3. Attribute : A column of a relation is generally referred to as an attribute/Field.

4. Degree : This refers to the number of attributes in a relation.

5. Cardinality : This refers to the number of tuples in a relation.

6. Primary Key : This refers to a set of one or more attributes that can uniquely identify

tuples within the relation.

7. Candidate Key : All attribute combinations inside a relation that can serve as primary key

are candidate keys(as these are candidates for primary key position).

8. Alternate Key : A candidate key that is not primary key, is called an alternate key.

9. Foreign Key : A non-key attribute, whose values are derived from the primary key of some

other table, is known as foreign key in its current table ie. Primary Key of one table when

used in another table for reference.

2

REFERENTIAL INTEGRITY

- A referential integrity is a system of rules that a DBMS uses to ensure that relationships
between records in related tables are valid, and that users don’t accidentally delete or
change related data. This integrity is ensured by foreign key.

CLASSIFICATION OF SQL STATEMENTS

SQL commands can be mainly divided into following categories:

1. Data Definition Language(DDL) Commands
Commands that allow you to perform task, related to data definition e.g;

• Creating, altering and dropping.

• Granting and revoking privileges and roles.

• Maintenance commands.

2. Data Manipulation Language(DML) Commands

Commands that allow you to perform data manipulation e.g., retrieval, insertion,
deletion and modification of data stored in a database.

3. Transaction Control Language(TCL) Commands (Grant and Revoke)

Commands that allow you to manage and control the transactions e.g.,

• Making changes to database, permanent

• Undoing changes to database, permanent

• Creating savepoints

• Setting properties for current transactions.

DATA TYPES

Numeric Data Type

1. int – used for number without decimal.

2. Decimal(m,d) – used for floating/real numbers. m denotes the total length of number and d
is number of decimal digits.

Date and Time Data Type

1. date – used to store date in YYYY-MM-DD format.

2. time – used to store time in HH:MM:SS format.

String Data Types

1. char(m) – used to store a fixed length string. m denotes max. number of characters.

2. varchar(m) – used to store a variable length string. m denotes max. no. of characters.

3

DIFFERENCE BETWEEN CHAR AND VARCHAR DATA TYPE

NULL VALUE

If a column in a row has no value, then column is said to be null , or to contain a null. You
should use a null value when the actual value is not known or when a value would not be
meaningful.

DATABASE COMMANDS

1. VIEW EXISTING DATABASE

To view existing database names, the command is: SHOW DATABASES ;

2. CREATING DATABASE IN MYSQL

For creating the database in MySQL, we write the following command : CREATE DATABASE
<databasename> ;

e.g. In order to create a database Student, command is : CREATE DATABASE Student ;

3. ACCESSING DATABASE

For accessing already existing database , we write :

USE <databasename> ;

e.g. to access a database named Student, we write command as : USE Student ;

4. DELETING DATABASE

For deleting any existing database , the command is :

DROP DATABASE <databasename> ;

e.g. to delete a database , say student, we write command as : DROP DATABASE Student ;

5. VIEWING TABLE IN DATABASE

In order to view tables present in currently accessed database , command is : SHOW TABLES ;

S.NO Char Datatype Varchar Datatype

1. It specifies a fixed length
character

It specifies a variable length
character string.

String.

2. When a column is given datatype as

CHAR(n), then MySQL ensures that all

values stored in that column have

this length i.e. n bytes. If a value is

shorter than this length n then blanks

are added, but the size of value

remains n bytes.

When a column is given datatype as

VARCHAR(n), then the maximum size

a value in this column can have is n

bytes. Each value that is stored in this

column store exactly as you specify it

i.e. no blanks are added if the length

is shorter than maximum length n.

4

CREATING TABLES IN MYSQL

- Tables are created with the CREATE TABLE command. When a table is created, its columns

are named, data types and sizes are supplied for each column.

Syntax of CREATE TABLE command is :

CREATE TABLE <table-name>(<column name> <data type> ,<column name> <data type>

,………) ;

E.g. in order to create table EMPLOYEE given below :

ECODE ENAME GENDER GRADE GROSS

Integer

Primary Key

Varchar of

length 20

Not NULL

Char of

length 1

Char of

length 2

Integer

We write the following command:

CREATE TABLE employee (ECODE integer Primary Key , ENAME varchar(20) Not Null , GENDER

char(1) , GRADE char(2) , GROSS integer) ;

INSERTING DATA INTO TABLE

The rows are added to relations(table) using INSERT command of SQL.

Syntax of INSERT is:

INSERT INTO <tablename> [<column list>] VALUES (<value1> , <value2> , …..) ;

e.g. to enter a row into EMPLOYEE table (created above), we write command as :

INSERT INTO employee VALUES(1001 , ‘Ravi’ , ‘M’ , ‘E4’ , 50000);

OR

INSERT INTO employee (ECODE , ENAME , GENDER , GRADE , GROSS) VALUES(1001 , ‘Ravi’

, ‘M’ , ‘E4’ , 50000);

Output: The Data gets added in the table.

ECODE ENAME GENDER GRADE GROSS

1001 Ravi M E4 50000

In order to insert another row in EMPLOYEE table, we write again INSERT

command :

INSERT INTO employee VALUES(1002 , ‘Akash’ , ‘M’ , ‘A1’ , 35000);

ECODE ENAME GENDER GRADE GROSS

1001 Ravi M E4 50000

5

1002 Akash M A1 35000

INSERTING NULL VALUES

To insert value NULL in a specific column, we can type NULL without quotes and NULL

will be inserted in that column.

E.g. in order to insert NULL value in GRADE column of above table, we write INSERT

command as :

INSERT INTO EMPLOYEE VALUES (1004 , ‘Aman’ , ‘M’ , NULL , 38965) ;

ECODE ENAME GENDER GRADE GROSS

1001 Ravi M E4 50000

1002 Akash M A1 35000

1004 Aman M NULL 38965

SIMPLE QUERIES USING SELECT COMMAND

The SELECT command is used to extract and display information from a table.

Syntax of SELECT command is :

SELECT <column name>,<column name> FROM <tablename> WHERE <condition name> ;

SELECTING ALL DATA

In order to retrieve everything (all columns) from a table, SELECT command is used as :

SELECT * FROM <tablename> ;

e.g. In order to retrieve everything from Employee table, we write SELECT command as :

SELECT * FROM Employee ;

EMPLOYEE

SELECTING PARTICULAR COLUMNS

A particular column from a table can be selected by specifying column-names with

SELECT command.

ECODE ENAME GENDER GRADE GROSS

1001 Ravi M E4 50000

1002 Akash M A1 35000

1004 Aman M NULL 38965

6

GENDER
M
M
F
M
F
F

E.g. From the table given below, if we want to select ECODE and ENAME column, then

command is :

EMPLOYEE

ECODE ENAME GENDER GRADE GROSS

1001 Ravi M E4 50000

1002 Akash M A1 35000

1004 Neela F B2 38965

1005 Sunny M A2 30000

1006 Ruby F A1 45000

1009 Neema F A2 52000

SELECT ECODE , ENAME FROM EMPLOYEE ;

E.g.2 To display only ENAME, GRADE and GROSS column, the command is :

SELECT ENAME , GRADE , GROSS FROM EMPLOYEE ;

SELECTING PARTICULAR ROWS

We can select particular rows from a table by specifying a condition through

WHERE clause along with SELECT statement.

E.g. To display the records of the female employees, then command is :

SELECT * FROM EMPLOYEE WHERE GENDER = ‘F’ ;

E.g.2. To display the records from Employee where salary is greater than 48000, then

command is :

SELECT * FROM EMPLOYEE WHERE GROSS > 48000 ;

ELIMINATING REDUNDANT DATA

The DISTINCT keyword eliminates duplicate rows from the results of a SELECT statement.

For example, Statement 1 given below will display all the data in the Gender column where as

Statement 2 will display the unique values in the Gender column.

Statement 1: SELECT GENDER FROM EMPLOYEE;

7

DISTINCT(GENDER)
M
F

Statement 2: SELECT DISTINCT(GENDER) FROM EMPLOYEE;

VIEWING STRUCTURE OF A TABLE

If we want to know the structure of a table, we can use DESCRIBE or DESC command, as

per following syntax :

DESCRIBE | DESC <tablename> ;

e.g. to view the structure of table EMPLOYEE, command is :

DESCRIBE EMPLOYEE ; OR DESC EMPLOYEE ;

USING COLUMN ALIASES

The columns that we select in a query can be given a different name, i.e. column alias

name for output purpose with the help of the keyword AS..

Syntax :

SELECT <columnname> AS column alias , <columnname> AS column

alias ….. FROM <tablename> ;

e.g. In output, suppose we want to display ECODE column as EMPLOYEE_CODE in output ,

then command is :

SELECT ECODE AS “EMPLOYEE_CODE” FROM EMPLOYEE ;

CONDITION BASED ON A RANGE

The BETWEEN operator defines a range of values that the column values must fall in

to make the condition true. The range include both lower value and upper value.

e.g. To display ECODE, ENAME and GRADE of those employees whose salary is

between 40000 and 50000, the command is:

SELECT ECODE , ENAME ,GRADE FROM EMPLOYEE WHERE GROSS BETWEEN 40000 AND

50000 ;

Output will be :

ECODE ENAME GRADE

1001 Ravi E4

1006 Ruby A1

8

ENAME

Ravi

Ruby

CONDITION BASED ON A LIST

To specify a list of values, IN operator is used. The IN operator selects value that

match any value in a given list of values. E.g.

Eg. To display the details of the employees who have grade either as A1or A2.

Ans:

SELECT * FROM EMPLOYEE WHERE GRADE IN (‘A1’ , ‘A2’);

Output will be :

ECODE ENAME GENDER GRADE GROSS

1002 Akash M A1 35000

1006 Ruby F A1 45000

1005 Sunny M A2 30000

1009 Neema F A2 52000

The NOT IN operator finds rows that do not match in the list.

E.g.

SELECT * FROM EMPLOYEE

WHERE GRADE NOT IN (‘A1’ , ‘A2’);

Output will be :

ECODE ENAME GENDER GRADE GROSS

1001 Ravi M E4 50000

1004 Neela F B2 38965

CONDITION BASED ON PATTERN MATCHES

LIKE operator is used for pattern matching in SQL. Patterns are described using two special

wildcard characters:

1. percent(%) – The % character matches any substring.

2. underscore(_) – The _ character matches any character.

e.g. to display names of employee whose name starts with R in EMPLOYEE table, the
command is :

SELECT ENAME FROM EMPLOYEE WHERE ENAME LIKE ‘R%’ ;

Output will be:

9

e.g. to display details of employee whose second character in name is ‘e’.

SELECT * FROM EMPLOYEE WHERE ENAME LIKE ‘_e%’ ;

Output will be :

ECODE ENAME GENDER GRADE GROSS

1004 Neela F B2 38965

1009 Neema F A2 52000

e.g. to display details of employee whose name ends with ‘y’.

SELECT * FROM EMPLOYEE WHERE ENAME LIKE ‘%y’ ;

Output will be :

ECODE ENAME GENDER GRADE GROSS

1005 Sunny M A2 30000

1006 Ruby F A1 45000

SEARCHING FOR NULL

The NULL value in a column can be searched for in a table using IS NULL in the
WHERE clause.

E.g. to list employee details whose salary contain NULL, we use the command :

SELECT * FROM EMPLOYEE WHERE GROSS IS NULL ;

Output:

Roll_No Name Marks
1 ARUN NULL
2 RAVI 56
4 SANJAY NULL

E.g. to display the names of those students whose marks is NULL, we use the command:

SELECT Name FROM EMPLOYEE WHERE Marks IS NULL ;

Output will be :

Name
ARUN
SANJAY

10

Step 3: SQL Assignment -1

Instruction: The Assignment should be done in the registers.

Q1. Define the terms:

(i) Database Abstraction

(ii) Data inconsistency

(iii) Conceptual level of database implementation/abstraction

(iv) Primary Key

(v) Candidate Key

(vi) Relational Algebra

(vii) Domain

Q2. Answer the following questions :

1. Differentiate between DDL and DML?
2. What is a constraint?
3. What are single row functions?
4. Compare CHAR and VARCHAR data types.
5. What are the differences between DELETE and DROP commands of SQL?

6. A table "Animals" in a database has 3 columns and 10 records. What is the degree and

cardinality of this table?
7. What is the difference between commit and rollback command?
8. Which keyword is used to remove redundant data from a relation?
9. Observe the following table and answer the parts(i) and(ii) accordingly

 Table:Product

 Pno Name Qty PurchaseDate
 101 Pen 102 12-12-2011
 102 Pencil 201 21-02-2013
 103 Eraser 90 09-08-2010
 109 Sharpener 90 31-08-2012
 113 Clips 900 12-12-2011

(i) Write the names of most appropriate columns, which can be considered as candidate
keys.

(ii) What is the degree and cardinality of the above table?

10. What is a Primary Key?
11. What is a Foreign Key? What is its use?
12. What are the various Integrity Constraints used in SQL?

