SESSION 2020-21 CLASS XI CHAPTER 1: SETS PART 2

By Mathematics Department
BBPS, Pitampura

SUBSETS

- Subset - A set B is said to be a subset of set A if all the elements present in set B are also present in set A and it is denoted by $B \subseteq A$.
- The cardinal number is a subset is either less than or equal to the set.
- Null set is a subset of every set .
- A set is a subset of itself.

> Some of the obvious relations among these subsets are: $\mathbf{N} \subset \mathbf{Z} \subset \mathbf{Q}, \mathbf{Q} \subset \mathbf{R}, \mathbf{T} \subset \mathbf{R}, \mathbf{N} \not \subset \mathbf{T}$.

- Watch the videos - https://youtu.be/ 9Wvu-R04go
- https://youtu.be/xotLg-oLboY
- https://voutu.be/BhFgcfOVSYc

Power Sets \& Universal Sets

- Power set-- The collection of all subsets of a set A is called the power set of A . It is denoted by $\mathrm{P}(\mathrm{A})$. In $\mathrm{P}(\mathrm{A})$, every element is a set.
- Number of elements of a Power set is equal to 2^{n} where ' n ' is the number of elements of set A.
Eg. $A=\{1,2,3\}$
$P(A)=\{\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$
- Universal Set - A set which contains every element with reference to a context, is represented by ' U '
- Watch the videos - https://youtu.be/8innwDI1bv8
- https://youtu.be/1obxIn-WD3A

INTERVALS

- Close Intervals - The interval which includes the end points and is denoted by [a,b]
$[a, b]=\{x: a \leq x \leq b\}$
- Open interval- This interval contains all the elements between a and b except a and b. It is denoted by (a, b)
$(a, b)=\{x: a<x<b\}$
- Semi close or semi open interval - This interval is open on one end. It is denoted by $[\mathrm{a}, \mathrm{b})$ or $(\mathrm{a}, \mathrm{b}]$
$[\mathrm{a}, \mathrm{b})=\{\mathrm{x}: \mathrm{a} \leq \mathrm{x}<\mathrm{b}\}$
$(a, b]=\{x: a<x \leq b\}$
- Watch the video - https://youtu.be/745H IYN87U

- Do exercise 1.3 NCERT and its examples

EXERCISE 1.3

1. Make correct statements by filling in the symbols \subset or $\not \subset$ in the blank spaces :
(i) $\{2,3,4\} \ldots\{1,2,3,4,5\}$ (ii) $\{a, b, c\} \ldots\{b, c, d\}$
(iii) $\{x: x$ is a student of Class XI of your school $\} \ldots\{x: x$ student of your school $\}$
(iv) $\{x: x$ is a circle in the plane $\} \ldots\{x: x$ is a circle in the same plane with radius 1 unit $\}$
(v) $\{x: x$ is a triangle in a plane $\} \ldots\{x: x$ is a rectangle in the plane $\}$
(vi) $\{x: x$ is an equilateral triangle in a plane $\} \ldots\{x: x$ is a triangle in the same plane $\}$
(vii) $\{x: x$ is an even natural number $\} \ldots\{x: x$ is an integer $\}$
2. Examine whether the following statements are true or false:
(i) $\{a, b\} \not \subset\{b, c, a\}$
(ii) $\{a, e\} \subset\{x: x$ is a vowel in the English alphabet $\}$
(iii) $\{1,2,3\} \subset\{1,3,5\}$
(iv) $\{a\} \subset\{a, b, c\}$
(v) $\{a\} \in\{a, b, c\}$
(vi) $\{x: x$ is an even natural number less than 6$\} \subset\{x: x$ is a natural number which divides 36\}
3. Let $\mathrm{A}=\{1,2,\{3,4\}, 5\}$. Which of the following statements are incorrect and why?
(i) $\{3,4\} \subset \mathrm{A}$
(ii) $\{3,4\} \in \mathrm{A}$
(iii) $\{\{3,4\}\} \subset \mathrm{A}$
(iv) $1 \in \mathrm{~A}$
(v) $1 \subset A$
(vi) $\{1,2,5\} \subset A$
(vii) $\{1,2,5\} \in \mathrm{A}$
(viii) $\{1,2,3\} \subset \mathrm{A}$
(ix) $\phi \in \mathrm{A}$
(x) $\phi \subset \mathrm{A}$
(xi) $\{\phi\}^{\circ} \subset \mathrm{A}$
4. Write down all the subsets of the following sets
(i) $\{a\}$
(ii) $\{a, b\}$
(iii) $\{1,2,3\}$
(iv)
5. How many elements has $P(A)$, if $A=\phi$?
6. Write the following as intervals:
(i) $\{x: x \in \mathrm{R},-4<x \leq 6\}$
(ii) $\{x: x \in \mathrm{R},-12<x<-10\}$
(iii) $\{x: x \in \mathrm{R}, 0 \leq x<7\}$
(iv) $\{x: x \in \mathrm{R}, 3 \leq x \leq 4\}$
7. Write the following intervals in set-builder form:
(i) $(-3,0)$
(ii) $[6,12]$
(iii) $(6,12]$
(iv) $[-23,5)$
8. What universal set(s) would you propose for each of the following :
(i) The set of right triangles.
(ii) The set of isosceles triangles.
9. Given the sets $A=\{1,3,5\}, B=\{2,4,6\}$ and $C=\{0,2,4,6,8\}$, which of the following may be considered as universal set (s) for all the three sets A, B and C
(i) $\{0,1,2,3,4,5,6\}$
(ii) ϕ
(iii) $\{0,1,2,3,4,5,6,7,8,9,10\}$
(iv) $\{1,2,3,4,5,6,7,8\}$

VENN DIAGRAMS

- A Venn diagram is an illustration of the relation between and among sets, group of objects that share something in common.
- Universal Set is represented by symbol
- Any set is represented by the symbol

- WATCH THE VIDEOS:

 https://youtu.be/KoS1y8xridY https://youtu.be/mLIuHU5Sj5w https://voutu.be/1GB3ivbichw- Union of sets A and B (AUB)

- Intersection of sets A and $B(A \cap B)$

- Disjoint sets $(A \cap B=\phi)$

- Difference of a set (A-B)

- Complement of a $\operatorname{Set}\left(\mathrm{A}^{\prime}\right)$

