Chapter 4 : DETERMINANTS PART 1

By Mathematics Department
 BBPS Pitampura

WHAT IS DETERMINANT OF A MATRIX

- Every square matrix A is associated with a number, called its determinant and it is denoted by $\operatorname{det}(A)$ or $|A|$.
- Note: Only square matrices have determinants. The matrices which are not square do not have determinants

Uses of determinants

What we know?

- You have learned how to find area of a triangle given 3 points, and its calculation was lengthy.
- We learned in the chapter matrices to find inverse of square matrices by elementary row operations.
- We know how to solve system of linear equations by various methods.

How can determinants help?

- We will be able to find area of triangles using determinants.
- we will learn method to find inverse of square matrices by using determinants.
- We will learn how to solve system of equations using determinants.

Video to understand what are Determinants

- https://youtu.be/YFGTpSkfT40

How to find determinants of 2×2 matrices.

- We have seen in previous slide that

If $A=[a]_{1 \times x}$, then $\operatorname{det}(A)=|A|=a$
Now if
$\mathrm{A}=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$
Then $|\mathrm{A}|=a_{11} a_{22}-a_{12} a_{21}$
See the video https://voutu.be/wrIAFfZBoBM

How to find determinants of 3×3 matrices

$$
\begin{aligned}
& \text { If } A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{21} & a_{23} \\
a_{21} & a_{32} & a_{23}
\end{array}\right] \text { then } \\
& |A|=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{22} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| \\
& \text { or }|A|=a_{11}\left(a_{22} a_{33}-a_{32} a_{23}\right)-a_{12}\left(a_{21} a_{33}-a_{31} a_{23}\right) \\
& +a_{13}\left(a_{21} a_{32}-a_{22} a_{31}\right)
\end{aligned}
$$

This determinant is found by expanding along Row 1 This is not the only way to find determinant we can expand along either Row 2, row 3, column 1 , column 2 or column 3.
Value of determinant is unique whether its found along any row or any column.
See the video to find determinant of 3×3 matrix along row 1
https://youtu.be/IhgFVZOgleg

Expansion along first Row ($\mathbf{R}_{\mathbf{1}}$)

Step 1 Multiply first element a_{11} of R_{1} by $(-1)^{(1+1)}\left[(-1)^{\text {sum of sumfixes in } a_{11}}\right]$ and with the second order determinant obtained by deleting the elements of first row $\left(R_{1}\right)$ and first column $\left(\mathrm{C}_{1}\right)$ of $|\mathrm{A}|$ as a_{11} lies in R_{1} and C_{1},
i.e.,

$$
(-1)^{1+1} a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|
$$

Step 2 Multiply 2nd element a_{12} of \mathbf{R}_{1} by $(-1)^{1+2}\left[(-1)^{\left.\text {cum of anfines in } a_{12}\right]}\right.$ and the second order determinant obtained by deleting elements of first row (R_{1}) and 2 nd column (C_{2}) of $|\mathrm{A}|$ as a_{12} lies in R_{1} and C_{2},
i.e., $\quad(-1)^{1+2} a_{12}\left|\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right|$

Step 3 Multiply third element a_{13} of R_{1} by $(-1)^{1+3}\left[(-1)^{\text {sum of sumixes }}=\alpha_{4}\right]$ and the second order determinant obtained by deleting elements of first row (R_{1}) and third column (C_{3}) of $|A|$ as a_{13} lies in R_{1} and C_{3}.
i.e., $\quad(-1)^{1+3} a_{13}\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right|$

Step 4 Now the expansion of determinant of A, that is, |A| written as sum of all three terms obtained in steps 1,2 and 3 above is given by

$$
\begin{aligned}
& \operatorname{det} \mathrm{A}=|\mathrm{A}|= \\
&(-1)^{1+1} a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|+(-1)^{1+2} a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right| \\
& \cdot \\
&+(-1)^{1+3} a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| \\
&|\mathrm{A}|= a_{11}\left(a_{22} a_{33}-a_{32} a_{23}\right)-a_{32}\left(a_{21} a_{33}-a_{31} a_{23}\right) \\
&+a_{13}\left(a_{21} a_{32}-a_{31} a_{22}\right)
\end{aligned}
$$

or

Expansion along second row (\mathbf{R}_{2})

$$
|A|=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|
$$

Expanding along R_{2}, we get

$$
\begin{align*}
|\mathrm{A}|= & (-1)^{2+1} a_{21}\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{32} & a_{33}
\end{array}\right|+(-1)^{2+2} a_{22}\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{31} & a_{33}
\end{array}\right| \\
& +(-1)^{2+3} a_{23}\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{31} & a_{32}
\end{array}\right| \\
= & -a_{21}\left(a_{12} a_{33}-a_{32} a_{33}\right)+a_{22}\left(a_{11} a_{33}-a_{31} a_{13}\right) \\
& -a_{23}\left(a_{11} a_{32}-a_{31} a_{12}\right) \\
|\mathrm{A}|= & -a_{21} a_{12} a_{33}+a_{21} a_{32} a_{13}+a_{22} a_{11} a_{33}-a_{22} a_{31} a_{13}-a_{23} a_{21} a_{32} \\
& +a_{23} a_{31} a_{12} \\
= & a_{11} a_{22} a_{33}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}+a_{12} a_{33} a_{31}+a_{13} a_{21} a_{32} \\
& -a_{13} a_{31} a_{22} \tag{2}
\end{align*}
$$

Expansion along first Column (C)

$$
|\mathrm{A}|=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|
$$

By expanding along C_{1}, we get

$$
\begin{aligned}
\| \mathrm{A} \mid= & a_{11}(-1)^{1+1}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|+a_{21}(-1)^{2+1}\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{32} & a_{33}
\end{array}\right| \\
& +a_{31}(-1)^{3+1}\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{22} & a_{23}
\end{array}\right| \\
= & a_{11}\left(a_{22} a_{33}-a_{23} a_{32}\right)-a_{21}\left(a_{12} a_{33}-a_{13} a_{32}\right)+a_{31}\left(a_{12} a_{23}-a_{13} a_{22}\right)
\end{aligned}
$$

NOTE:

(i) For easiec calculations, we shall expand the determinant along that row or column which contains maximum number of zeros. (If row 3 contains 2 elements 0 then expand along it)
(ii) While expanding, instead of multiplying by $(-1)^{* *}$, we can multiply by +1 or -1 according as $(i+j)$ is even or odd.
(iii) Let $\mathrm{A}=\left[\begin{array}{ll}2 & 2 \\ 4 & 0\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{ll}1 & 1 \\ 2 & 0\end{array}\right]$. Then, it is casy to verify that $\mathrm{A}=2 \mathrm{~B}$. Also $|A|=0-8=-8$ and $|B|=0-2=-2$.
Observe that, $|\mathrm{A}|=4(-2)=2^{2}|\mathrm{~B}|$ or $|\mathrm{A}|=2^{n}|\mathrm{~B}|$, where $n=2$ is the order of square matrices A and B.

In general, if $\mathrm{A}=\mathrm{kB}$ where A and B are square matrices of order n, then $|\mathrm{A}|=k^{n}$ $|\mathrm{B}|$, where $n=1,2,3$

Task

- Do exercise 4.1 ncert and its examples.

Area of Triangle

- https://youtu.be/bW0E5APNVUk
- Watch the above video.

Let three points in a plane be $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and $\mathrm{C}\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$, then
(i) Area of $\triangle A B C=\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|$

The area is always a positive quantity thus absolute value of determinant to be considered.
(iii) If three points are collinear, then $\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|=0$

Task

- Do exercise 4.3 ncert and its examples.

