BAL BHARATI PUBLIC SCHOOL, PITAMPURA, DELHI – 110034

SUBJECT: MATHEMATICS

CHAPTER-3

TOPIC: Pair of Linear Equations in Two Variables

STEP 1: GUIDELINES AND INTRODUCTION

Dear students, kindly refer to the following notes/video links for the Chapter- "Pair of Linear Equations in Two Variables" and thereafter do the questions in your Math notebook.

(Chapter3 – Part 4)

Link for the chapter:-http://ncert.nic.in/textbook/textbook.htm?jemh1=3-15

Introduction: We have already learnt the graphical and algebraic methods of finding the solution of a pair of linear equations in two variables.

Today, we are going to learn an important concept of finding unknown (for example k) in the following system of linear equations.

kx +3y+7 =0

3x+4y+8=0, given the system has infinitely many solutions/no solution/ unique solution. (Based on Exercise 3.5, Q2)

STEP 2:

SUBTOPIC:

Finding k if the pair of equation has infinitely many solutions/ no solution/ unique solution.

STEP 3:-

Key points and important links for your reference:-

Look at the following question before attempting the assignment questions in your register.

Q-1.Find the value of k for which the following system of equations has a unique solution:

x + 4y = 5

3x + ky = 1

Solution:

The given system of equations is:

x + 4y - 5 = 0

3x + ky - 1 = 0

The above equations are of the form:

 $a_1 x + b_1 y + c_1 = 0$

 $\begin{array}{l} a_2 x + b_2 y + c_2 = 0 \\ \\ \text{Here, } a_1 = 1, \, b_1 = 4, \, c_1 = -5 \\ a_2 = 3, \, b_2 = k, \, c_2 = -1 \\ \\ \text{Now} \quad a_1 \, / \, a_2 = 1/3, \ b_1 \, / \, b_2 = 4/k \\ \\ \text{Condition for unique solution is:} \end{array}$

 $a_1 / a_2 \neq b_1 / b_2$

$$\frac{1}{3} \neq \frac{4}{k}$$

 \Rightarrow k \neq 12. Thus, the system has unique solution when k \neq 12

Hence, the given system of equations will have unique solution for all real values of k other than 12. (Answer statement)

ck

Note- Attempt assignment question 1 now.

Q2- Find k if the system has no solution.

You can ignore the 3rd equality as shown below:

$$kx + 3y = 3$$

$$12x + ky = 6$$
For no solution $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$

$$\Rightarrow \quad \frac{k}{12} = \frac{2}{k} \neq \frac{3}{6}$$

$$\frac{k}{12} = \frac{3}{k}$$

$$k^2 = 36$$

$$k = \pm 6 i.e., \quad k = 6, -6$$
Also,
$$\frac{3}{k} \neq \frac{3}{6}$$

$$\frac{3 \times 6}{3} \neq k$$

$$k \neq 6$$

$$k = -6$$
 satisfies both the condition

Hence, k = -6

Q3- Find the value of k for which the following system of equations has infinitely many solutions.

The given system of equations is:

 $(k-1)x + 3y = 7 \qquad \dots (i)$ $(k+1)x + 6y = 5k - 1 \dots (ii)$ Here, for infinitely solutions, $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ $\frac{k-1}{k+1} = \frac{3}{6} = \frac{7}{5k-1}$ now, $\frac{k-1}{k+1} = \frac{3}{6}$ $\Rightarrow 6(k-1) = 3(k+1)$ $\Rightarrow 6k - 6 = 3k + 3$ $\Rightarrow 6k - 3k = 3 + 6$ $\Rightarrow 3k = 9$ $\Rightarrow k = 3$ and $\frac{3}{6} = \frac{7}{5k-1}$ $\Rightarrow 3(5k-1) = 7 * 6$ $\Rightarrow 15k - 3 = 42$ $\Rightarrow 15k = 45$ $\Rightarrow k = 3$

Thus for k=3, $a_1 / a_2 = b_1 / b_2 = c_1 / c_2$

STEP 4:

Points to Remember

i) Refer to the solutions given above to solve the question.

ii) Presentation of questions should be given utmost importance.

ASSIGNMENT:

Q-Find k if the following system has i) unique solution ii) no solution iii) infinitely many solutions.

4x + ky + 8 = 0

2x - y = 12

NOTE: Do Exercise 3.5, Q2 (all the parts)