SUBJECT: MATHEMATICS

CHAPTER-3

TOPIC: Pair of Linear Equations in Two Variables

STEP 1:
GUIDELINES AND INTRODUCTION
Dear students, kindly refer to the following notes/video links for the Chapter- "Pair of Linear Equations in Two Variables" and thereafter do the questions in your Math notebook.
(Chapter3 - Part 4)
Link for the chapter:-http://ncert.nic.in/textbook/textbook.htm?jemh1=3-15
Introduction: We have already learnt the graphical and algebraic methods of finding the solution of a pair of linear equations in two variables.

Today, we are going to learn an important concept of finding unknown (for example k) in the following system of linear equations.

$$
k x+3 y+7=0
$$

$3 x+4 y+8=0$, given the system has infinitely many solutions/no solution/ unique solution. (Based on Exercise 3.5, Q2)

STEP 2:

SUBTOPIC:

Finding k if the pair of equation has infinitely many solutions/ no solution/ unique solution.

STEP 3:-

Key points and important links for your reference:-
Look at the following question before attempting the assignment questions in your register.

Q-1.Find the value of k for which the following system of equations has a unique solution:
$x+4 y=5$
$3 x+k y=1$

Solution:

The given system of equations is:
$x+4 y-5=0$
$3 x+k y-1=0$
The above equations are of the form:
$a_{1} x+b_{1} y+c_{1}=0$
$\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
Here, $a_{1}=1, b_{1}=4, c_{1}=-5$
$\mathrm{a}_{2}=3, \mathrm{~b}_{2}=\mathrm{k}, \mathrm{c}_{2}=-1$
Now $\quad a_{1} / a_{2}=1 / 3, \quad b_{1} / b_{2}=4 / k$
Condition for unique solution is:
$a_{1} / a_{2} \neq b_{1} / b_{2}$
$\frac{1}{3} \neq \frac{4}{k}$
$\Rightarrow k \neq 12$. Thus, the system has unique solution when $\mathbf{k} \neq 12$
Hence, the given system of equations will have unique solution for all real values of k other than 12. (Answer statement)

Note- Attempt assignment question 1 now.

Q2- Find k if the system has no solution.

Check the link:-

https://youtu.be/919CjHLi1s4ck

You can ignore the $3^{\text {rd }}$ equality as shown below:

$$
\begin{aligned}
& k x+3 y=3 \\
& 12 x+k y=6
\end{aligned}
$$

Forno solution $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$

$$
\begin{array}{rlr}
\Rightarrow \quad \frac{k}{12} & =\frac{2}{k} \neq \frac{3}{6} \\
\frac{k}{12} & =\frac{3}{k} & \\
k^{2} & =36 & \\
k & = \pm 6 i e_{n} & k=6,-6
\end{array}
$$

Also,

$$
\begin{aligned}
& \frac{3}{k} \neq \frac{3}{6} \\
& \frac{3 \times 6}{3} \neq k \\
& h \neq 6
\end{aligned}
$$

$k=-6$ satisfies both the condition
Hence, $k=-6$

Q3- Find the value of k for which the following system of equations has infinitely many solutions.

The given system of equations is:
$(k-1) x+3 y=7$
$(k+1) x+6 y=5 k-1$.
Here, for infinitely solutions, $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\frac{k-1}{k+1}=\frac{3}{6}=\frac{7}{5 k-1}$
now, $\frac{k-1}{k+1}=\frac{3}{6}$
$\Rightarrow 6(k-1)=3(k+1)$
$\Rightarrow 6 k-6=3 k+3$
$\Rightarrow 6 k-3 k=3+6$
$\Rightarrow 3 k=9$
$\Rightarrow k=3$
and $\frac{3}{6}=\frac{7}{5 k-1}$
$\Rightarrow 3(5 k-1)=7 * 6$
$\Rightarrow 15 k-3=42$
$\Rightarrow 15 k=45$
$\Rightarrow k=3$
Thus for $k=3, a_{1} / a_{2}=b_{1} / b_{2}=c_{1} / c_{2}$

STEP 4:

Points to Remember
i) Refer to the solutions given above to solve the question.
ii) Presentation of questions should be given utmost importance.

ASSIGNMENT:

Q-Find k if the following system has i) unique solution ii) no solution iii) infinitely many solutions.

$$
\begin{gathered}
4 x+k y+8=0 \\
2 x-y=12
\end{gathered}
$$

NOTE: Do Exercise 3.5, Q2 (all the parts)

