

BAL BHARATI PUBLIC SCHOOL, PITAMPURA, DELHI – 110034

SUBJECT:- MATHEMATICS

<u>CHAPTER:- 2 (Part – 1)</u>

TOPIC:-POLYNOMIALS

GUIDELINES

Dear students

Kindly read the content given below and view the links shared for better understanding.

• Solve the given questions in the yellow register provided in the notebook set.

Link for the chapter : <u>http://ncert.nic.in/textbook/textbook.htm?jemh1=3-15</u>

Introduction and explanation of Polynomials

Let us recall algebraic expressions, term, coefficient, monomial, binomial, trinomial, polynomial and degree of a polynomial.

Polynomial comes from *poly-* (meaning "many") and *-nomial* (in this case meaning "term") ... so it says "many terms"

(1) Algebraic Expressions: Any expression containing constants, variables, and the operations like addition, subtraction, etc. is called as an algebraic expression.

For example: 5x, 2x - 3, $x^2 + 1$, etc. are some algebraic expressions.

(2) Polynomials: The expression which contains one or more terms with nonzero coefficient and non-negative power of the variable is called a polynomial. A polynomial can have any number of terms.

For example: 10, a + b, 7x + y + 5, w + x + y + z, etc. are some polynomials.

A single-variable polynomial having degree 'n' has the following **polynomial equation**:

 $a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x^1 + a_0 x^0$

In this, a_0 , a_1 , a_2 , a_n are constants and $a_n \neq 0$. Since $x^1 = x$ and $x^0 = 1$, therefore, the above expression can be shortened to

 $a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$

General expression of a polynomial : A polynomial in one variable x of degree n and can be expressed as, $p(x)=a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$, where $a_n \neq 0$ and a_0 , a_1 , a_n are constants.

Degree of a polynomial : The highest power of the variable in a polynomial is called the degree of the polynomial.

For Example: The degree of $p(x) = x^5 - x^3 + 7$ is 5

Classification of polynomials on the basis of degree.

	degree	Polynomial	Example
(a)	1	Linear	x + 1, 2x + 3 etc
(b)	2	Quadratic	$ax^2 + bx + c$ etc
(c)	3	Cubic	$x^3 - 3x^2 + 1$ etc.
(d)	4	Biquadratic	$x^4 - 1$

Zero Polynomial : The constant polynomial 0 is called zero polynomial.

Constant polynomial : A polynomial containing one constant term only is called a constant polynomial. The degree of non-zero constant polynomial is zero.

A polynomial of degree one is called a linear polynomial. For Example: 2x - 7, s + 5, etc. are some linear polynomials.

A polynomial having the highest degree of two is called a quadratic polynomial. For Example: x^2 -9, a^2 + 7, etc. are some quadratic polynomials.

A polynomial having the highest degree of three is called a cubic polynomial. For Example: x^3 - 9x +2, a^3 + a^2 + a + 7, etc. are some cubic polynomial.

Coefficients : In the polynomial $x^3 + 3x^2 + 3x + 1$ coefficients of x^3 , x^2 , x are 1, 3, 3 respectively and +1 is the constant term in it.

Note: 1. The degree of a non-zero constant polynomial is zero. 2. Degree of a zero polynomial is not defined.

ZEROES OF A POLYNOMIAL:

Zero or root:

A real number "a" is a zero or root of the polynomial $p(x) = a_0x^n + a_1x^{n-1} + ... + a_n$, if p(a) = 0.

For example : p(x) = x + 4, zero of polynomial p(x) is -4; as p(-4) = 0

Value of a polynomial: The value of a polynomial p(x) at x = c is obtained by substituting x = c in the given polynomial and is denoted by p(c).

Key points and important links for reference:-

1. Terms and coefficients of polynomial:

https://examfear.com/free-video-lesson/Class-9/Maths/Polynomials/part-3/Polynomials Part 3 (Terms and Coefficient).htm

2. Degree of a zero polynomial :

https://examfear.com/free-video-lesson/Class-9/Maths/Polynomials/part-6/Polynomials Part 6 (Degree of Zero polynomial).htm

3.Visit <u>https://youtu.be/o5NkTIcAXL4</u> for further reference.

SUMMARY:

A polynomial of one term is called a monomial.

A polynomial of two terms is called a binomial.

A polynomial of three terms is called a trinomial.

A polynomial of degree one is called a linear polynomial.

A polynomial of degree two is called a quadratic polynomial.

A polynomial of degree three is called a cubic polynomial.

Zero or root: A real number 'a' is a zero or root of the polynomial $p(x) = a_0xn + a$

 $a_1xn-1 + ... + a_n$, if p(a) = 0.

ASSIGNMENT :-

Exercice 2.1 and 2.2 from NCERT (To be done in the yellow register)

QUESTIONS FOR PRACTICE

Note : Following questions are for the practice only and should be done in a separate practice register/copy of math

1.Define a Polynomial. Give two examples of expressions which are polynomials and two examples which are not polynomials.

- 2. Give an example of a trinomial which is a cubic polynomial.
- 3. Give an example of a quadratic polynomial which is a binomial.
- 4. Fill in the blanks:

a) A polynomial having three terms is called ______.

- b) The degree of quadratic polynomial is_____.
- c) The degree of $x^3 4x + 7$ is_____.
- d) The degree of a non-zero constant polynomial is_____.

e) The coefficient of x^2 in $-2x^2 - 3x + 8$ is _____.

f) The zero of zero polynomial is ______.

5. Which of the following expressions are polynomials in one variable and which are not? Give reason.

- a) x² +2x-5
- b) -3x
- c) x¹⁰+ 10x+ y

6. (a) Find a zero of the polynomial p(x) = 2x + 3.

(b) Check whether -2 & 2 are zeroes of polynomial x + 2.

7. Find the value of the polynomial $5x - 4x^2 + 3$ at x = 2 and x = -1.

8. What is the value of a if degree of polynomial $x^3 + x^{a-4} + x^2 + 1$ is 4? 9. Find the coefficient of x in (x - 7)(x + 5).