

MYSQL Part-II

Lesson Plan -2 02/04/2020

Link for Video Session:

meet.google.com/kdh-sjit-ryq

Step 1: Learning Objectives:

To enable students to :

• Implement the sorting of data using order by clause

• Update the data in table(records)

• Delete data from table

• Use aggregate functions

• Implement joins in SQL

Step 2: Introduction:

• SORTING RESULTS

The ORDER BY clause allow sorting of query result. The sorting can be done

either in ascending or descending order, the default is ascending and to arrange in

descending order we use desc after the column name.

SYNTAX:

SELECT <column name> , <column name>…. FROM <tablename>

WHERE <condition> ORDER BY <column name>;

e.g. Write a query to display the details of employees in EMPLOYEE table in alphabetical

order.

Solution: SELECT * FROM EMPLOYEE ORDER BY ENAME ;

Output will be :

ECODE ENAME GENDER GRADE GROSS

1002 Akash M A1 35000
1004 Neela F B2 38965

1009 Neema F A2 52000
1001 Ravi M E4 50000

1006 Ruby F A1 45000
1005 Sunny M A2 30000

e.g. To display list of employees in descending alphabetical order whose salary is greater
than 40000.

Solution:

SELECT ENAME FROM EMPLOYEE WHERE GROSS > 40000 ORDER BY ENAME desc ;

https://meet.google.com/kdh-sjit-ryq

Output will be:

ENAME
Ravi

Ruby
Neema

• MODIFYING DATA IN TABLES

The UPDATE command of SQL is used to modify data in a table.

The UPDATE command specifies the record to be changed / updated using the WHERE
clause, and the new data using the SET keyword.

Syntax:

UPDATE <tablename> SET <columnname>=value, <columnname>=value WHERE <condition>;

e.g. Write a query to change the salary of employee of those in EMPLOYEE table having
employee code 1009 to 55000.

Solution:

UPDATE EMPLOYEE SET GROSS = 55000 WHERE ECODE = 1009 ;

UPDATING MORE THAN ONE COLUMNS

Multiple columns of a record can also be updated using UPDATE command.

e.g. To update the salary to 58000 and grade to B2 for those employee whose employee
code is 1001.

Solution:

UPDATE EMPLOYEE SET GROSS = 58000, GRADE=’B2’ WHERE ECODE = 1009 ;

Few More Examples:

e.g.1. Increase the salary of each employee by 1000 in the EMPLOYEE table.

UPDATE EMPLOYEE

SET GROSS = GROSS +100 ;

e.g.2. Double the salary of employees having grade as ‘A1’ or ‘A2’ .

UPDATE EMPLOYEE

SET GROSS = GROSS * 2 ;

WHERE GRADE=’A1’ OR GRADE=’A2’ ;

e.g.3. Change the grade to ‘A2’ for those employees whose employee code is 1004 and name is
Neela.

UPDATE EMPLOYEE SET GRADE=’A2’ WHERE ECODE=1004 AND GRADE=’NEELA’;

• DELETING DATA FROM TABLES

The DELETE command removes rows from a table.

Syntax:

DELETE FROM <tablename> WHERE <condition> ;

For example, Query to remove the details of those employee from EMPLOYEE table whose
grade is A1.

DELETE FROM EMPLOYEE WHERE GRADE =’A1’;

TO DELETE ALL THE CONTENTS FROM A TABLE, we use

DELETE FROM EMPLOYEE ;

That is, if we do not specify any condition with WHERE clause, then all the rows of the
table will be deleted.

• DROPPING TABLES

The DROP TABLE command lets you drop a table from the database i.e. removal of table
from storage.

Syntax:

DROP TABLE <tablename> ;

e.g. Write a query to delete a table employee

Solution: DROP TABLE employee ;

Once this command is given, the table name is no longer recognized and no more
commands can be given on that table.

After this command is executed, all the data in the table along with table structure will
be deleted.

Difference between Delete and Drop Commands:

DELETE COMMAND DROP TABLE COMMAND

It is a DML command. It is a DDL Command.

This command is used to delete only
data rows /records from a table.

This command is used to delete all the data of
the table along with the table structure.

 The table is no longer recognized after
execution of this command.

Syntax: Syntax:
DELETE FROM <tablename> DROP TABLE <tablename> ;
WHERE <condition> ;

• ALTER TABLE COMMAND

The ALTER TABLE command is used to change definitions of existing tables.(adding
columns, deleting columns etc.).

The ALTER TABLE command is used for:

1. Adding columns to a table

2. Modifying column-definitions of a table.

3. Deleting columns of a table.

4. Adding constraints to table.

5. Enabling/Disabling constraints.

ADDING COLUMNS TO TABLE

To add a column to a table, ALTER TABLE command can be used as per following syntax:

ALTER TABLE <tablename> ADD <Column name> <datatype> <constraint> ;

e.g. to add a new column ADDRESS to the EMPLOYEE table, we can write command as :

ALTER TABLE EMPLOYEE ADD ADDRESS VARCHAR(50);

A new column by the name ADDRESS will be added to the table, where each row
will contain NULL value for the new column.

ECODE ENAME GENDER GRADE GROSS ADDRESS

1001 Ravi M E4 50000 NULL

1002 Akash M A1 35000 NULL
1004 Neela F B2 38965 NULL

1005 Sunny M A2 30000 NULL
1006 Ruby F A1 45000 NULL

1009 Neema F A2 52000 NULL

However if you specify NOT NULL constraint while adding a new column, MySQL
adds the new column with the default value of that datatype e.g. for INT type it will
add 0 , for CHAR types, it will add a space, and so on.

MODIFYING COLUMNS

Column name and data type of column can be changed as per following syntax :

ALTER TABLE <table name>CHANGE <old column name> <new column name> <new
datatype>;

If Only datatype of column need to be changed, then

ALTER TABLE <table name> MODIFY <column name> <new datatype>;

e.g.1. In table EMPLOYEE, change the column GROSS to SALARY.

ALTER TABLE EMPLOYEE CHANGE GROSS SALARY INTEGER;

e.g.2. In table EMPLOYEE , change the column ENAME to EM_NAME and data type from
VARCHAR(20) to VARCHAR(30).

ALTER TABLE EMPLOYEE CHANGE ENAME EM_NAME VARCHAR(30);

e.g.3. In table EMPLOYEE , change the datatype of GRADE column from CHAR(2) to
VARCHAR(2).

ALTER TABLE EMPLOYEE MODIFY GRADE VARCHAR(2);

DELETING COLUMNS

To delete a column from a table, the ALTER TABLE command takes the following form :

ALTER TABLE <table name> DROP <column name>;

e.g. to delete column GRADE from table EMPLOYEE:

ALTER TABLE EMPLOYEE DROP GRADE ;

ADDING/REMOVING CONSTRAINTS TO A TABLE

ALTER TABLE statement can be used to add constraints to your existing table by using it in
following manner:

a) TO ADD PRIMARY KEY CONSTRAINT

ALTER TABLE <table name> ADD PRIMARY KEY (Column name);

e.g. to add PRIMARY KEY constraint on column ECODE of table EMPLOYEE

ALTER TABLE EMPLOYEE ADD PRIMARY KEY (ECODE) ;

b) TO ADD FOREIGN KEY CONSTRAINT

ALTER TABLE <table name> ADD FOREIGN KEY (Column name) REFERENCES Parent
Table (Primary key of Parent Table);

REMOVING CONSTRAINTS

-

- To remove primary key constraint from a table, we use ALTER TABLE command as :

ALTER TABLE <table name> DROP PRIMARY KEY ;

- To remove foreign key constraint from a table, we use ALTER TABLE command as :

ALTER TABLE <table name> DROP FOREIGN KEY ;

INTEGRITY CONSTRAINTS/CONSTRAINTS

- A constraint is a condition or check applicable on a field(column) or set of fields(columns).

- Common types of constraints include :

S.No. Constraints Description

1 NOT NULL Ensures that a column cannot have NULL value

2 DEFAULT Provides a default value for a column when none is
specified

3 UNIQUE Ensures that all values in a column are different
4 CHECK Makes sure that all values in a column satisfy certain

criteria
5 PRIMARY KEY Used to uniquely identify a row in the table

6 FOREIGN KEY Used to ensure referential integrity of the data

NOT NULL CONSTRAINT

By default, a column can hold NULL. It you not want to allow NULL value in a column,
then NOT NULL constraint must be applied on that column.

DEFAULT CONSTARINT

The DEFAULT constraint provides a default value to a column when the INSERT INTO
statement does not provide a specific value.

UNIQUE CONSTRAINT

- The UNIQUE constraint ensures that all values in a column are distinct. In other
words, no two rows can hold the same value for a column with UNIQUE constraint.

CHECK CONSTRAINT

- The CHECK constraint ensures that all values in a column satisfy certain conditions. Once
defined, the table will only insert a new row or update an existing row if the new value
satisfies the CHECK constraint.

PRIMARY KEY CONSTRAINT

- A primary key is used to identify each row in a table. A primary key can consist of one
or more fields(column) on a table. When multiple fields are used as a primary key, they
are called a composite key.

FOREIGN KEY CONSTRAINT

- Foreign key is a non key column of a table (child table) that draws its values from primary
key of another table(parent table).

- The table in which a foreign key is defined is called a referencing table or child table. A
table to which a foreign key points is called referenced table or parent table.

REFERENCING ACTIONS

Referencing action with ON DELETE clause determines what to do in case of a DELETE

occurs in the parent table. Referencing action with ON UPDATE clause determines what to

do in case of an UPDATE occurs in the parent table.

Q: Create two tables

Customer(customer_id, name) and Customer_sales(transaction_id, amount , customer_id)

Underlined columns indicate primary keys and bold column names indicate foreign key.

Make sure that no action should take place in case of a DELETE or UPDATE in the parent
table.

Sol :

CREATE TABLE Customer (customer_id int Not Null Primary Key , name varchar(30)) ;

CREATE TABLE customer_sales (transaction_id Not Null Primary Key , amount int ,

customer_id int , FOREIGN KEY(customer_id) REFERENCES Customer (customer_id) ON
DELETE NO ACTION ON UPDATE NO ACTION);

• AGGREGATE / GROUP FUNCTIONS

Aggregate / Group functions work upon groups of rows , rather than on single row,
and return one single output. Different aggregate functions are : COUNT() , AVG()
, MIN() , MAX() , SUM ()

Table : EMPL

EMPNO ENAME JOB SAL DEPTNO

8369 SMITH CLERK 2985 10

8499 ANYA SALESMAN 9870 20

8566 AMIR SALESMAN 8760 30
8698 BINA MANAGER 5643 20
8912 SUR NULL 3000 10

1. AVG()

This function computes the average of given
data. e.g. SELECT AVG(SAL) FROM EMPL ;

Output

2. COUNT()

This function counts the number of rows in a given column, where COLUMN is not null.

If you specify the asterisk (*), this function returns all rows, including duplicates and nulls.

e.g. SELECT COUNT(*) FROM EMPL ;

Output

e.g.2 SELECT COUNT(JOB) FROM EMPL ;

6051.6
AVG(SAL)

5
COUNT(*)

Output

3. MAX()

This function returns the maximum value from a given column or expression.

e.g. SELECT MAX(SAL) FROM EMPL ;

Output

4. MIN()

This function returns the minimum value from a given column or expression.

e.g. SELECT MIN(SAL) FROM EMPL;

Output

5. SUM()

This function returns the sum of values in given column or expression.

e.g. SELECT SUM(SAL) FROM EMPL ;

Output

GROUPING RESULT – GROUP BY

The GROUP BY clause combines all those records(row) that have identical values in a
particular field(column) or a group of fields(columns).

GROUPING can be done by a column name, or with aggregate functions in which case the
aggregate produces a value for each group.

Table : EMPL

EMPNO ENAME JOB SAL DEPT
NO

8369 SMITH CLERK 2985 10

8499 ANYA SALESMAN 9870 20

8566 AMIR SALESMAN 8760 30
8698 BINA MANAGER 5643 20

e.g. Calculate the number of employees in each grade.

SELECT JOB, COUNT(*) FROM EMPL GROUP BY JOB;

Output

JOB COUNT(*)
CLERK 1

SALESMAN 2
MANAGER 1

e.g.2. Calculate the sum of salary for each department.

4
COUNT(JOB)

9870
MAX(SAL)

2985

MIN(SAL)

30258
SUM(SAL)

SELECT DEPTNO ,SUM(SAL) FROM EMPL GROUP BY DEPTNO ;

Output

** One thing that you should keep in mind is that while grouping , you should include only

those values in the SELECT list that either have the same value for a group or contain a

group(aggregate) function. Like in e.g. 2 given above, DEPTNO column has one(same) value

for a group and the other expression SUM(SAL) contains a group function.

PLACING CONDITION ON GROUPS – HAVING CLAUSE

- The HAVING clause places conditions on groups in contrast to WHERE clause that places
condition on individual rows.

While WHERE conditions cannot include aggregate functions, HAVING conditions can do
so.

- e.g. To display the jobs where the number of

employees is less than 2, SELECT JOB, COUNT(*)

FROM EMPL

GROUP BY JOB

HAVINGCOUNT(*) < 2 ;

Output

JOB COUNT(*)

CLERK 1
MANAGER 1

• DATABASE TRANSACTIONS

TRANSACTION

A Transaction is a logical unit of work that must succeed or fail in its entirety. This
statement means that a transaction may involve many sub steps, which should
either all be carried out successfully or all be ignored if some failure occurs. A
Transaction is an atomic operation which may not be divided into smaller
operations.
Example of a Transaction

a) Begin transaction

b) Get balance from account X Calculate new balance as X – 1000 Store new balance

into database file Get balance from account Y Calculate new balance as Y + 1000

Store new balance into database file

c) End transaction

DEPTNO SUM(SAL)

10 2985

20 15513
30 8760

TRANSACTION PROPERTIES (ACID PROPERTIES)
1. ATOMICITY(All or None Concept) – This property ensures that either all
operations of the transaction are carried out or none are.

2. CONSISTENCY – This property implies that if the database was in a consistent
state before the start of transaction execution, then upon termination of transaction, the
database will also be in a consistent state.

3. ISOLATION – This property implies that each transaction is unaware of other
transactions executing concurrently in the system.

4. DURABILITY – This property of a transaction ensures that after the successful
completion of a transaction, the changes made by it to the database persist, even if there
are system failures.

TRANSACTION CONTROL COMMANDS(TCL)

• The TCL of MySQL consists of following commands: BEGIN or START

1. COMMIT – Ends the current transaction by saving database changes

and starts a new transaction.

2. ROLLBACK – Ends the current transaction by discarding database

changes and starts a new transaction.

3. SAVEPOINT – Define breakpoints for the transaction to allow partial rollbacks.

4. SET AUTOCOMMIT – Enables or disables the default auto commit mode.

JOINS

- A join is a query that combines rows from two or more tables. In a join- query,
more than one table are listed in FROM clause.

Table : empl

EMPNO ENAME JOB SAL DEPTNO
8369 SMITH CLERK 2985 10

8499 ANYA SALESMAN 9870 20
8566 AMIR SALESMAN 8760 30
8698 BINA MANAGER 5643 20

Table : dept
DEPT
NO

DNAME LOC

10 ACCOUNTING NEW DELHI

20 RESEARCH CHENNAI

30 SALES KOLKATA
40 OPERATIONS MUMBAI

CARTESIAN PRODUCT /CROSS JOIN

- Consider the following query :

SELECT * FROM EMPL, DEPT ;

This query will give you the Cartesian product i.e. all possible concatenations are formed of

all rows of both the tables EMPL and DEPT. Such an operation is also known as Cross Join. It

returns n1 x n2 rows where n1 is number of rows in first table and n2 is number of rows in

second table.

EQUI-JOIN

- The join in which columns are compared for equality, is called Equi - Join.

In equi-join, all the columns from joining table appear in the output even if they are identical.

e.g. SELECT * FROM empl, dept WHERE empl.deptno = dept.deptno ;

Q

Q: With reference to empl and dept table, display the location of employee SMITH.

SELECT ENAME, LOC FROM EMPL, DEPT WHERE EMPL.DEPTNO = DEPT.DEPTNO AND

ENAME=’SMITH’;

Q: Display details like department number, department name, employee number,
employee name, job and salary. And order the rows by employee number.

SELECT EMPL.deptno, dname,empno,ename,job,sal FROM EMPL,DEPT

WHERE EMPL.DEPTNO=DEPT.DEPTNO ORDER BY EMPL.DEPTNO;

deptno column is appearing twice in output.

TABLE ALIAS

-A table alias is a temporary label given along with table name in FROM clause.

e.g.

SELECT E.DEPTNO, DNAME,EMPNO,ENAME,JOB,SAL FROM EMPL E, DEPT D

WHERE E.DEPTNO = DEPT.DEPTNO ORDER BY E.DEPTNO;

In above command table alias for EMPL table is E and for DEPT table , alias is D.

Q: Display details like department number, department name, employee number,
employee name, job and salary. And order the rows by employee number with
department number. These details should be only for employees earning atleast Rs.
6000 and of SALES department.

SELECT E.DEPTNO, DNAME,EMPNO, ENAME, JOB, SAL FROM EMPL E, DEPT D

WHERE E.DEPTNO = D.DEPTNO AND DNAME=’SALES’

AND SAL>=6000 ORDER BY E.DEPTNO;

NATURAL JOIN

By default, the results of an equijoin contain two identical columns. One of the
two identical columns can be eliminated by restating the query. This result is
called a Natural join.

e.g. SELECT empl.*, dname, loc

FROM empl,dept

WHERE

empl.deptno = dept.deptno ;

empl.* means select all columns from empl table. This thing can be used with any table.

The join in which only one of the identical columns(coming from joined tables) exists, is
called Natural Join.

Step 3: Assignment (to be done in the registers)

Q1.

Q2.

Q3.

Q4.

Note :

• KM is Kilometer travelled
• NOP is number of travellers travelled in vehicle
• TDATE is Travel Date

(i) To display CNO, CNAME, TRAVELDATE from the table TRAVEL in descending order of CNO.

(ii) To display the CNAME of all the customers from the table TRAVEL who are travelling by

vehicle with code V01 or V02.

(iii) To display the CNO and CNAME of those customers from the table TRAVEL who travelled

between ‘2015-12-31’ and ‘2015-05-01’.

(iv) To display all the details from table TRAVEL for the customers, who have travelled

distance more than 120 KM in ascending order of NOP.

(v) SELECT COUNT (*), VCODE FROM TRAVEL GROUP BY V CODE HAVING COUNT(*)>1;

(vi) SELECT DISTINCT VCODE FROM TRAVEL;

(vii) SELECT A.VCODE,CNAME,VEHICLETYPE FROM TRAVEL A,VEHICLE B

WHERE A.VCODE=B.VCODE AND KM<90;

(viii) SELECT CNAME,KM*PERKM FROM TRAVEL A, VEHICLE B WHERE

A.VCODE=B.VCODE AND A.VCODE=‘V05’;

