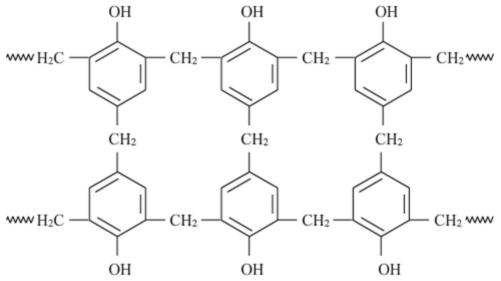

CHEMISTRY CLASS-XII SESSION 2020-21 POLYMERS PART-2

StepI: Revise polymers till types of polymerisation reactions.
StepII: Read the chapter from N.C.E.R.T and then revise from the notes.
StepIII: You can open the link https://youtu.be/0xdJlS0xZ0Y
Polymers Shiksha House

StepIV:Attempt the online Quiz after revising the chapter.

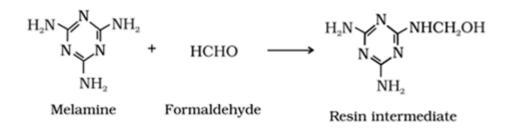
https://forms.gle/6X9qtfhLgihkdMa86


Phenol-Formaldehyde Polymer(Bakelite)

They are obtained by the condensation reaction of phenol with formaldehyde in the presence of either an acid or a base. The initial product formed is linear and called **Novolac** which is used in paints.

Novolac on heating with formaldehyde undergoes cross linkages and forms solid mass called **Bakelite**.

Novolac, obtained on heating with formaldehyde, undergoes cross- linking to form an infusible solid mass called bakelite.



Bakelite

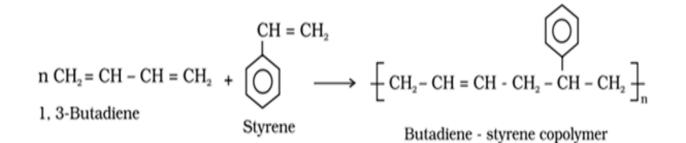
Used for making combs, phonograph records, electrical switches and handles of various utensils.

Melamine – formaldehyde polymer

• It is obtained by the condensation polymerisation of melamine and formaldehyde.

• It is used in the manufacture of unbreakable crockery.

Polymers of Commercial Importance

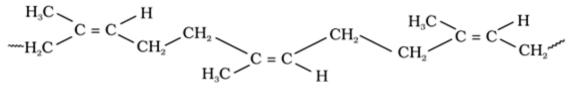

The key notes of the chapter are as follows: Copolymerisation

It is a type of polymerisation reaction in which a mixture of more than one monomeric species is allowed to polymerise and form a polymer called copolymer.

It is formed by both chain growth and step growth polymerisation.

Copolymer contains multiple units of each monomer used in the same polymeric chain.

For example: 1, 3-Butadiene and styrene can undergo copolymerization to form butadiene –styrene copolymer.


Rubber Rubber is of two types: Natural and synthetic

1. Natural Rubber

It is a natural polymer possessing elastic properties. It is also an elastomer i.e. the varios chains are held by weak vander waal interactions

It is a linear polymer of isoprene (2-methyl buta-1, 3-diene).

It is also called cis-1.4-polyisoprene

Natural rubber

Drawbacks of Natural Rubber:

- It becomes soft at high temperature and brittle at low temperature.
- It is non-resistant to the attack of oxidizing agents.
- It has high water absorption capacity.

Vulcanisation of Rubber: The process of heating a mixture of raw rubber with sulphur in order to improves its physical properties is called vulcanisation of rubber.

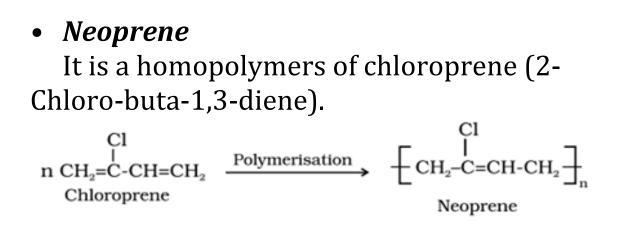
Vulcanisation is carried out by adding sulphur (3-5%) and zinc oxide to the rubber, and then heating at a temperature range 373K to 415K for 20-30 minutes.

Zinc oxide accelerates the rate of vulcanisation

Sulphur forms cross links at the reactive sites of double bonds and thus the rubber gets stiffened.

Thus about 5% sulphur is used for making tyre rubber and 30% of it for making battery case rubber.

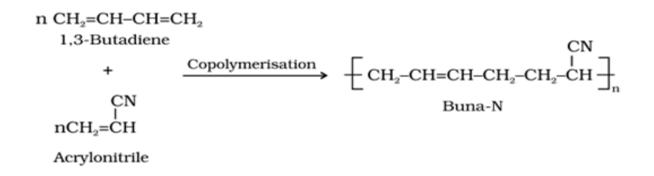
The improved properties of vulcanised rubber are:


(i) High elasticity.(ii) Low water-absorption tendency(iii) Resistance to oxidation.

2. Synthetic Rubber

Synthetic rubbers are polymers derived from buta-1.3-diene or buta-1.3-diene derivatives.

It is like vulcanised rubber and is capable of stretching to twice its length.


The synthetic rubber is of two types:

Uses: It is used for manufacturing conveyor belts, gaskets and hoses.

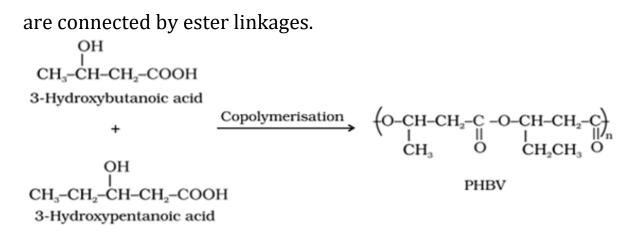
• Buna-N

It is a copolymer of Buta-1, 3-diene with acrylonitrile in the presence of a peroxide catalyst.

Uses: It is used in making conveyor belts and printing rollers.

Biodegradable Polymers

These are the synthetic polymers that are hydrolysed by enzymes and to some extent degrade by oxidation.


These polymers contain functional groups similar to the functional groups present in biopolymers.

Some important examples of biodegradable polymers are given below:

Poly β- hydroxybutyrate- co-β-hydroxy valerate (PHBV):

• **Preparation:** It is a copolymer of 3-hydroxy butanoic

acid and 3-hydroxy pentanoic acid in which the monomeric units

- Uses: It is used in packaging, orthopaedic devices and even in controlled release of drugs
 2. Suture Polymer:
- It is a copolymer of glycolic acid and lactic acid.
- Sutures help the healing process by closing and sealing a wound.
- Dextron was the first biodegradable suture made from biodegradable polyesters for postoperation sticher.

3. Nylon-2-Nylon-6:

It is a copolymer of glycine (H₂N-CH₂-COOH) and amino caproic acid [H₂N (CH₂)₅ COOH] and is biodegradable. $nH_2N - CH_2 - COOH + nNH_2 - CH_2 \rightarrow_5 COOH$ Glycine \downarrow -H₂O Amino caproic acid $= -CH_2 - NH - C + CH_2 \rightarrow_5 NH = -CH_2 - CH_2 - NH = -CH_2 - CH_2 - NH = -CH_2 - CH_2 -$

Polymers of Commercial Importance

Some Commercially Important Polymers, their monomers and uses are given below:

Polymer	Monomer	Uses
Polyvinyl chloride (PVC)	CH2=CHCl Vinyl Chloride	Manufacture of rain coats hand bags, vinyl flooring, and water pipes.
Bakelite	Phenol and formaldehyde	For making combs,electrical switches,handles of utensils and computer discs.
Polystyrene	CH2=CH–C6H5 Vinylbenzene (Styrene)	As insulator, wrapping material, manufacture of toys, radio and television cabinets
Polypropene	Propene	Manufacture of ropes,toys,pipes,fibres etc
Glyptal	Ethylene glycol and phthalic acid	Manufacture of paints and lacquers

lymer	Monomer	Uses	
Buna-S	1, 3-butadiene	Manufacture of	
Dulla-5	$CH_2 = CH - CH = CH2$	Autotyres,floortyre	S
	Buna-S	1, 3-butadiene Buna-S	Image: Buna-S Image:

		Styrene	Cable insulation
		$C_6H_5CH = CH_2$	
Ii Buna-N		1, 3-butadiene	For making oil
	$CH_2 = CH - CH = CH2$	seals,tank lining	
	Dulla-IN	Acrylonitrile	
		$CH_2 = CH - CN$	
Iii Neoprene		ÇI	Manufacture of
	$CH_2 = C - CH = CH_2$	Hoses,gaskets and	
		Chloroprene	Conveyer belts
Dacron Iv OR Terylene		Ethylene glycol	Used in blending
	Dacron		With cotton and
	HOH ₂ C –CH ₂ OH	Wool fibres	
	Terylene	Terephthalic acid	
		соон—	

