Class XII

SUBJECT:- MATHEMATICS

CHAPTER:-3 MATRICES

STEP 1:- Watch the videos to understand what are Matrices.
https://youtu.be/7vnfRPzAQOg
https://youtu.be/JMjbPh1Mjn8

STEP 2:- Watch the video to understand what are Elements of a matrix, what is order and position of an Element in a matrix.
https://youtu.be/F37rd-BpVOo

STEP 3:- Watch the video to understand when are 2 or more matrices equal. https://youtu.be/NiaQKHIntGE

STEP 4 :- Watch the videos to understand what are different types of matrices. https://youtu.be/alc9i7V2e9Q
https://youtu.be/nfG4NwLhH14
Try exercise 3.1 NCERT and examples of it.

STEP 5 :- Watch the videos to understand addition, subtraction and scalar multiplication of matrices. https://youtu.be/ZCmVpGv6 1g
https://youtu.be/7jb AO hRc8
https://youtu.be/4IHyTQH1iS8

STEP 6 :- Watch the videos to understand the multiplication of two or more matrices. https://youtu.be/o6tGHLkZvVM https://youtu.be/o6tGHLkZvVM https://youtu.be/-8ST0y82yXg

Try exercise 3.2 NCERT and examples of it.
STEP 7 :- Watch the video to understand what is Transpose of a matrix.
https://youtu.be/g Rz94DXvNo

STEP 8 : - Watch the videos to understand what are symmetric \& skew symmetric matrices.
https://youtu.be/IBgXO5qvbrg
https://youtu.be/uKPmyG18N71
Try exercise 3.3 NCERT \& examples of it.

STEP 8 : - Watch the videos to understand what is identity matrix and inverse of a matrix,
https://youtu.be/iks8wCfPerU
https://youtu.be/AMLUikdDQGk
Try exercise 3.4 + miscellaneous and examples of it.

SUMMARY:

1. A matrix is a rectangular arrangement of numbers (real or complex)
2. A matrix is enclosed by [].
3. a_{11}, a_{12}... etc., in the above matrix are known as the element of the matrix, generally represented as a_{ij}, which denotes element in $\mathrm{i}^{\text {th }}$ row and jcolumn.
4. If a matrix has m rows and n columns, then matrix A is of order $m \times n$.
5. Two matrices A and B are said to be equal, if both having same order and corresponding elements of the matrices are equal.
6. Let A and B be two matrices each of order $m \times n$. Then, the sum of matrices $A+B$ is defined only if matrices A and B are of same order.

$$
\begin{aligned}
& \text { If } \mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \mathrm{\times n}}, \mathrm{~A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \mathrm{\times n}} \\
& \text { Then, } \mathrm{A}+\mathrm{B}=\left[\mathrm{a}_{\mathrm{ij}}+\mathrm{b}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}
\end{aligned}
$$

Properties of Addition of Matrices If A, B and C are three matrices of order m x n, then

1. Commutative Law A $+\mathrm{B}=\mathrm{B}+\mathrm{A}$
2. Associative Law $(A+B)+C=A+(B+C)$
3. Existence of Additive Identity A zero matrix (0) of order mxn (same as of A), is additive identity, if $\mathrm{A}+0=\mathrm{A}=0+\mathrm{A}$
4. Existence of Additive Inverse If A is a square matrix, then the matrix $(-\mathrm{A})$ is called additive inverse, if $\mathrm{A}+(-\mathrm{A})=0=(-\mathrm{A})+\mathrm{A}$
5. Cancellation Law
$\mathrm{A}+\mathrm{B}=\mathrm{A}+\mathrm{C} \Rightarrow \mathrm{B}=\mathrm{C}$ (left cancellation law)
$\mathrm{B}+\mathrm{A}=\mathrm{C}+\mathrm{A} \Rightarrow \mathrm{B}=\mathrm{C}$ (right cancellation law)
6. Let A and B be two matrices of the same order, then subtraction of matrices, $A-B$, is defined as

$$
A-B=\left[a_{i j}-b_{i j}\right]_{m \times n}
$$

Where $A=\left[a_{i j}\right]_{\mathrm{m} \times \mathrm{n}} \& B=\left[\mathrm{b}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}$
8. Let $A=\left[a_{i j}\right]_{m \times n}$ be a matrix and k be any scalar. Then, the matrix obtained by multiplying each element of A by k is called the scalar multiple of A by k and is denoted by $k A$, given as $k A=\left[k a_{i j}\right]_{m \times n}$

Properties of Scalar Multiplication If A and B are matrices of order mxn, then

1. $k(A+B)=k A+k B$
2. $\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{A}=\mathrm{k}_{1} \mathrm{~A}+\mathrm{k}_{2} \mathrm{~A}$
3. $\mathrm{k}_{1} \mathrm{k}_{2} \mathrm{~A}=\mathrm{k}_{1}\left(\mathrm{k}_{2} \mathrm{~A}\right)=\mathrm{k}_{2}\left(\mathrm{k}_{1} \mathrm{~A}\right)$
4. $(-\mathrm{k}) \mathrm{A}=-(\mathrm{kA})=\mathrm{k}(-\mathrm{A})$
5. Multiplication of Matrices

Let $A=\left[a_{i j}\right]_{\mathrm{mxn}}$ and $\mathrm{B}=\left[\mathrm{b}_{\mathrm{ij}}\right]_{\mathrm{nxp}}$ are two matrices such that the number of columns of A is
equal to the number of rows of B, then multiplication of A and B is denoted by $A B$, is given by
$c_{i j}=\sum_{k=1}^{n} a_{i k} b_{h j}$,
where c_{ij} is the element of matrix C and $\mathrm{C}=\mathrm{AB}$
Properties of Multiplication of Matrices

1. Commutative Law Generally $\mathrm{AB} \neq \mathrm{BA}$
2. Associative Law $(\mathrm{AB}) \mathrm{C}=\mathrm{A}(\mathrm{BC})$
3. Existence of multiplicative Identity A.I = A = I.A, I is called multiplicative Identity.
4. Distributive Law $\mathrm{A}(\mathrm{B}+\mathrm{C})=\mathrm{AB}+\mathrm{AC}$
5. In the matrix product $A B$, the matrix A is called premultiplier (prefactor) and B is called postmultiplier (postfactor).
6. The rule of multiplication of matrices is row column wise (or $\rightarrow \downarrow$ wise) the first row of $A B$ is obtained by multiplying the first row of A with first, second, third,... columns of B respectively; similarly second row of A with first, second, third, ... columns of B, respectively and so on.
7. Properties of exponents :

Let A be a square matrix. Then, we can define

1. $A^{n+1}=A^{n}$. A, where $n \in N$.
2. $A^{m} \cdot A^{n}=A^{m+n}$
3. $\left(A^{\mathrm{m}}\right)^{\mathrm{n}}=\mathrm{A}^{\mathrm{mn}}, \forall \mathrm{m}, \mathrm{n} \in \mathrm{N}$
4. Let $A=\left[a_{i j}\right]_{m \times n}$, be a matrix of order $m \times n$. Then, the $n \times m$ matrix obtained by interchanging the rows and columns of A is called the transpose of A and is denoted by A^{\prime} or A^{\top}.
$A^{\prime}=A^{\top}=\left[a_{i j}\right]_{n \times m}$
Properties of Transpose
5. $\left(\mathrm{A}^{\prime}\right)^{\prime}=\mathrm{A}$
6. $(\mathrm{A}+\mathrm{B})^{\prime}=\mathrm{A}^{\prime}+\mathrm{B}^{\prime}$
7. $(\mathrm{AB})^{\prime}=\mathrm{B}^{\prime} \mathrm{A}^{\prime}$
8. $(\mathrm{KA})^{\prime}=\mathrm{kA}{ }^{\prime}$
9. $\left(\mathrm{A}^{\mathrm{N}}\right)^{\prime}=\left(\mathrm{A}^{\prime}\right)^{\mathrm{N}}$
10. $(\mathrm{ABC})^{\prime}=\mathrm{C}^{\prime} \mathrm{B}^{\prime} \mathrm{A}^{\prime}$
11. A square matrix $A=\left[a_{i j}\right]_{n \times n}$, is said to be symmetric, if $A^{\prime}=A$. $i . e ., a_{i j}=a_{j i}, \forall i$ and j.
12. A square matrix A is said to be skew-symmetric matrices, if $i . e ., a_{i j}=-a_{j i}, \forall i$ and j.
13. Elements of principal diagonals of a skew-symmetric matrix are all zero. i.e., $a_{i i}=-a_{i i}$
$2 a_{i i}=0$ or $a_{i i}=0$, for all values of i.
14. If A is a square matrix, then
(a) $A+A^{\prime}$ is symmetric.
(b) $A-A^{\prime}$ is skew-symmetric matrix.

If A and B are two symmetric (or skew-symmetric) matrices of same order, then $A+B$ is also symmetric (or skew-symmetric).
If A is symmetric (or skew-symmetric), then $k A$ (k is a scalar) is also symmetric for skewsymmetric matrix.

If A and B are symmetric matrices of the same order, then the product $A B$ is symmetric, iff $B A=A B$.
Every square matrix can be expressed uniquely as the sum of a symmetric and a skew symmetric matrix.
The matrix $B^{\prime} A B$ is symmetric or skew-symmetric according as A is symmetric or skewsymmetric matrix.
All positive integral powers of a symmetric matrix are symmetric.
All positive odd integral powers of a skew-symmetric matrix are skew-symmetric and positive even integral powers of a skew-symmetric are symmetric matrix.
If A and B are symmetric matrices of the same order, then
(a) $A B-B A$ is a skew-symmetric
(b) $A B+B A$ is symmetric.

For a square matrix $A, A A^{\prime}$ and $A^{\prime} A$ are symmetric matrix.
18. Any one of the following operations on a matrix is called an elementary transformation.

1. Interchanging any two rows (or columns), denoted by $R_{i} \leftrightarrow \rightarrow R_{j}$ or $C_{i} \longleftrightarrow C_{j}$
2. Multiplication of the element of any row (or column) by a non-zero quantity and denoted by $\mathrm{R}_{\mathrm{i}} \rightarrow \mathrm{k} \mathrm{R}_{\mathrm{i}}$ or $\mathrm{C}_{\mathrm{i}} \rightarrow \mathrm{k} \mathrm{C}_{\mathrm{j}}$
3. Addition of constant multiple of the elements of any row to the corresponding element of any other row, denoted by $R_{i} \rightarrow R_{i}+k R_{j}$ or $C_{i} \rightarrow C_{i}+k C_{j}$
4. Inverse of a matrix if it exists is unique.
