SUBJECT:- MATHEMATICS

CHAPTER:-3

TOPIC:- (Pair Of Linear Equations In Two Variables)

STEP 1:-

GUIDELINES AND INTRODUCTION

Dear students, kindly refer to the following notes/video links for the Chapter- "Pair of Linear Equations in Two Variables" and thereafter do the questions in your math notebook.

```
( Chapter3 - Part 1)
```

Link for the chapter :- http://ncert.nic.in/textbook/textbook.htm?jemh1=3-15
Introduction: A general form of linear equation in two variables is: $a x+b y+c=0$, where a, b and c are real numbers and at least one of a and b is non zero. The solution of such an equation is a pair of values for x and y which make both sides of the equation equal.

The geometrical or graphical representation of a linear equation in two variables is always a straight line. Hence, a pair of linear equations in two variables will be two straight lines which are considered together in the same plane.

If there are two lines in a plane, three cases are possible:

- The two lines will intersect at one point. \{Fig. 1 (a)\}
- They will not intersect, i.e., they are parallel. \{Fig. 1 (b)\}
- The two lines will be coincident. \{Fig. 1 (c)\}

In this chapter we are going to learn about the point of intersection i.e. the common solution of the pair of linear equations, if any.

STEP 2:-

Subtopics:-

i) Graphical method of solving a pair of linear equations in two variables.
ii) Real life application (statement questions) based on a pair of linear equations.

STEP 3:-

Key points and important links for reference:-

1. Recapitulation of linear equation in two variables-

Refer to the link https://www.youtube.com/watch?v=skC8086qbKY
2. A pair of linear equations in two variables is said to form a system of simultaneous linear equations in two variables. Example :- $\mathbf{x + 2 y = 1 0}$ $2 x+y=5$

The most general form of a pair of linear equations in two variables is:
$a_{1} x+b_{1} y+c_{1}=0$
$a_{2} x+b_{2} y+c_{2}=0$
Where $a_{1}, b_{1}, c_{1}, a_{2},, b_{2}, c_{2}$ are real numbers and $a_{1}{ }^{2}+b_{1}{ }^{2} \neq 0$ and $a_{2}{ }^{2}+b_{2}{ }^{2} \neq 0$
3. A pair of values of x and y satisfying each of the equation of the given pair is the solution of a pair of linear equations in two variables.

Refer to this link to enhance your knowledge.
https://www.youtube.com/watch?v=hZ6-RHL4IB8
5. Framing of a pair of linear equations in two variables:
https://www.youtube.com/watch?v=IdaSoLWenyo\&feature=youtu.be
https://www.youtube.com/watch?v=D8gPL18CtYI
6. Graphical solution of system of linear equation:
https://www.youtube.com/watch?v=NPzICNDEJqA
Without solving , how can we identify whether the system of linear equation /pair of linear equations in two variables represents parallel lines, intersecting lines or coincident lines? The following link will answer this question:
https://www.youtube.com/watch?v=T7T-z3i4918

STEP 4:-

Points to Remember
Conditions for solubility (or consistency)
*If a pair of linear equation is given by $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$,
the following cases can arise:
(i) If $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}} \Rightarrow$ the system of a pair of linear equations is consistent.
(system has a unique solution -graphical representation is intersecting lines)
(ii) If $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}} \Rightarrow$ the pair of linear equations is inconsistent. (system has no solution - graphical representation is parallel lines)
(iii) $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \Rightarrow$ the pair of linear equations is dependent and consistent. (system has infinitely many solutions- graphical representation is coincident lines)

ASSIGNMENT :-

(Exercise3.1 and 3.2 from NCERT including examples)

MORE QUESTIONS FOR PRACTICE

Pair of linear equation in two variables

1. Express y in terms of x in the expression $3 x-7 y=10$.
2. The point of intersection of the lines $x=2$ and $y=3$ is given by \qquad .
3. The area of the triangle formed by the line $\frac{x}{a}+\frac{y}{b}=1$ and the two coordinate axes is
a) $a b$
b) $2 a b$
c) $1 / 2 a b$
d) $1 / 4 a b$
4. The area of the triangle formed by the lines $y=x, x=6$ and $y=0$ is
a) 36 sq.units
b) 18 sq.units
c) 9 sq.units
d) 72 sq.units.
5. The area of the triangle formed by the lines $x=3, y=4$ and $x=y$ is
a) $1 / 2$ sq.units
b) 1 sq.units
c) 2 sq.units
d)none of these
6. If a pair of linear equations is consistent, their graph lines will be
a) parallel
b) always coincident
c) always intersecting
7. Does the point $(2,3)$ lie on the graph of $3 x-2 y=5$?
8. A pair of linear equations which has a unique solution $x=2$ and $y=-3$ is
(a) $x+y=1$ and $2 x-3 y=-5$
(b) $2 x+5 y=-11$ and $2 x-3 y=-22$
(c) $2 x+5 y=-11$ and $4 x+10 y=22$
(d) $\mathrm{x}-4 y-14=0$ and $5 x-y-13=0$
9. If a pair of linear equations in two variables is consistent, the lines represented by two equations are:
(a) Intersecting
(b) Parallel
(c) always coincident
(d)intersecting or coincident
10. For $2 x+3 y=4, y$ can be written in terms of x as \qquad
11. Solve graphically the pair of linear equations $5 x-y=5$ and $3 x-2 y=-4$ Also find the co-ordinates of the points where these lines intersect y-axis.
12. Ram is walking along the line joining $(1,4)$ and $(0,6)$

Rahim is walking along the line joining $(3,4)$ and $(1,0)$
Represent on the graph and find the point where both of them cross each other.
14. Given the linear equation $2 x+3 y-12=0$, write another linear equation in these variables, such that geometrical representation of the pair so formed is:
(i) Parallel Lines (ii) Coincident Lines
15. If we draw lines of $x=2$ and $y=3$, what kind of lines do we get?

