
CHAPTER 2

WORKING WITH
FUNCTIONS

Class XII
Session – 2020-21

LEARNING OBJECTIVES

This presentation will help you to analyse and

comprehend the following topics followed with

a link to attempt a quiz:

➢ The concept of functions and its advantage.

➢ Types of function

➢ Scope and Lifetime of a variable

➢ Types of Parameters used in functions

❖Keyword def: This is the keyword used to say that a function

will be defined now, and the next word that is there, is the

function name.

❖Function name: This is the name that is used to identify the

function. The function name comes after the def keyword.

❖Parameter list: Parameter or Argument list are place holders

that define the parameters that go into the function. The

parameters help to generalise the

transformation/computation/task that is needed to be done.

❖Function docstrings: These are optional constructs that

provide a convenient way for associated documentation to

the corresponding function. Docstrings are enclosed by triple

quotes '''you will write the docstring here'''

❖Function returns: Python functions returns a value. You can

define what to return by the return keyword. In case you do

not define a return value, the function will return None.

There are two types of functions in Python.

❖Built-in Functions - These are the built-in functions of

Python with pre-defined functionalities.

❖User-defined Functions - As the name goes, these are the

functions defined by the users as per the requirement at

different stages. We define our own functionalities and

give a name to these functions. User-defined function

with return type has return statements to return values

after calculation whereas, function with non-return type

has no return statement.

Advantages of user-defined functions

1.User-defined functions help to decompose a large

program into small segments which makes program easy to

understand, maintain and debug.

2.If repeated code occurs in a program. Function can be

used to include those codes and execute when needed by

calling that function.

3.Programmers working on large project can divide the

workload by making different functions.

Scope of a variable is the portion of a program where the

variable is recognized. Parameters and variables defined

inside a function is not visible from outside. Hence, they

have a local scope.

Lifetime of a variable is the period throughout which the

variable exits in the memory. The lifetime of variables

inside a function is as long as the function executes.

They are destroyed once we return from the function.

Hence, a function does not remember the value of a

variable from its previous calls.

An example to illustrate the scope of a variable

inside a function

Output
Value inside function: 10

Value outside function: 20

This is because the variable x inside the function is different (local to

the function) from the one outside. Although they have same names,

they are two different variables with different scope.

Local Variables vs Global Variables

• Variables or parameters defined inside a function are

called local variables as their scope is limited to the

function only. On the contrary, Global variables are

defined outside of the function.

• Local variables can’t be used outside the function

whereas a global variable can be used throughout the

program anywhere as per requirement.

• The lifetime of a local variable ends with the

termination or the execution of a function, whereas the

lifetime of a global variable ends with the termination

of the entire program.

• The variable defined inside a function can also be made

global by using the global statement.

Function with Parameters
It is possible to define a function to receive one or more

parameters (also called arguments) and use them for

processing inside the function block.

Parameters/arguments should be given suitable formal

names. The SayHello() function is now defined to receive a

string parameter called name. Inside the function, print()

statement is modified to display the greeting message

addressed to the received parameter.

Example: Parameterized Function

def SayHello(name):

print ("Hello {}!.".format(name))

return

You can call the above function as shown below.

>>> SayHello("Gandhi")

Hello Gandhi!

ARGUMENTS

DEFAULT KEYWORD VARIABLE REQUIRED

Function definition is here

def printinfo(name, age = 35):

"This prints a passed info into this function"

print ("Name: ", name)

print ("Age ", age)

return;

Now you can call printinfo function

printinfo(age=50, name="miki")

printinfo(name="miki")

Common Programming Errors

Using a non-default argument after

default arguments raise a Syntax Error.

In Python functions, a default

argument can only be followed by a

default argument. Non-default

arguments must be placed before

default arguments.

■ Default arguments are those that take a default value
if no argument value is passed during the function
call. You can assign this default value by with the
assignment operator =, just like in the following
example:

def printme(str):

"This prints a passed string into this function"

print (str)

return;

Now you can call printme function

printme()

When the above code is executed, it produces the following result −

Traceback (most recent call last):

File "test.py", line 11, in <module>

printme();

TypeError: printme() takes exactly 1 argument (0 given)

def result(m1,m2,m3):

ttl=m1+m2+m3

percent=ttl/3

if percent>=50:

print ("Result: Pass")

else:

print ("Result: Fail")

return

p=int(input("Enter your marks in physics: "))

c=int(input("Enter your marks in chemistry: "))

m=int(input("Enter your marks in maths: "))

result(p,c,m)

■ You may not always know how many arguments you’ll get. In
that case, you use an asterisk(*) before an argument name.

■ >>> def sayhello(*names):

for name in names:

print("Hello, {name}")

■ And then when you call the function with a number of
arguments, they get wrapped into a Python tuple. We iterate
over them using the for loop in python.

>>> sayhello('Ayushi’,’Aryan','Megha’)

Output:

Hello, Ayushi
Hello, Aryan
Hello, Megha

VARIABLE Arguments/

Arbitrary Arguments

def changeme(mylist):

"This changes a passed list into this function"

mylist.append([1,2,3,4]);

print ("Values inside the function: ", mylist)

return

Now you can call changeme function

mylist = [10,20,30];

changeme(mylist);

print ("Values outside the function: ", mylist)

Values inside the function: [10, 20, 30, [1, 2, 3, 4]]

Values outside the function: [10, 20, 30, [1, 2, 3, 4]]

>>>sum = lambda x, y, z : x + y + z

>>>sum(5, 10, 15)

30

The expression does not need to always return a value. It can be

void.

>>>disp = lambda str: print('Output: ' + str)

>>>disp("Hello World!")

Output: Hello World!

Click on the link given below and attempt the

quiz.

https://forms.gle/nRbf2B2C8CKRLJM37

https://forms.gle/nRbf2B2C8CKRLJM37

