CHAPTER 2

WORKING WITH
FUNCTIONS

Class XI|
Session - 2020-21

LEARNING OBJECTIVES

This presentation will help you to analyse and

comprehend the following topics followed with
a link to attempt a quiz:

» The concept of functions and its advantage.
» Types of function
» Scope and Lifetime of a variable

» Types of Parameters used in functions

DEFINING A FUNCTION

“* Keyword def: This is the keyword used to say that a function
will be defined now, and the next word that is there, is the
function name.

* Function name: This is the name that is used to identify the
function. The function name comes after the def keyword.

s Parameter list: Parameter or Argument list are place holders
that define the parameters that go into the function. The
parameters help to generalise the
transformation/computation/task that is needed to be done.

¢ Function docstrings: These are optional constructs that
provide a convenient way for associated documentation to
the corresponding function. Docstrings are enclosed by triple
quotes "'you will write the docstring here

¢ Function returns: Python functions returns a value. You can
define what to return by the return keyword. In case you do
not define a return value, the function will return None.

TYPES OF FUNCTIONS IN
PYTHON

There are two types of functions in Python.

+»*Built-in Functions - These are the built-in functions of
Python with pre-defined functionalities.

*»User-defined Functions - As the name goes, these are the
functions defined by the users as per the requirement at
different stages. We define our own functionalities and
give a name to these functions. User-defined function
with return type has return statements to return values
after calculation whereas, function with non-return type
has no return statement.

Advantages of user-defined functions
1.User-defined functions help to decompose a large
program into small segments which makes program easy to

understand, maintain and debug.

2.If repeated code occurs in a program. Function can be
used to include those codes and execute when needed by

calling that function.

3.Programmers working on large project can divide the

workload by making different functions.

WORKING OF A FUNCTION

...

...

2 function call
J

...

function_name (arg_1, arg_2)

—

...

WORKING OF A FUNCTION

Python10.1.py

FT = - w s

def funcl(): Function definition
print ("I am learning Python Function")

funcl () # Function Coll

e - - - =
F b FYy T }
|)
Ll I Ldrd

b il

. . s =
i o T
pATLTTL L

Run Python10.1
> "C:\Users\DK\Desktop\Python code\Python Test\Python 18\Pythonl@
160 /Python1@® Code/Pythonle.l.py"

I am learning Python Function Funmﬂn DUTDUT

=]

SCOPE & LIFETIME

Scope of a variable is the portion of a program where the
variable is recognized. Parameters and variables defined
inside a function is not visible from outside. Hence, they
have a local scope.

Lifetime of a variable is the period throughout which the
variable exits in the memory. The lifetime of variables
inside a function is as long as the function executes.

They are destroyed once we return from the function.
Hence, a function does not remember the value of a
variable from its previous calls.

An example to illustrate the scope of a variable
inside a function

script.py
1~ def my_func():
2 X = 1@
3 print("Value inside function:",x)
4
5 X = 20
& my_func()
7 print("Value outside Function:",xﬂ

Output

Value inside function: 10
Value outside function: 20

This is because the variable x inside the function is different (local to
the function) from the one outside. Although they have same names,
they are two different variables with different scope.

Local Variables vs Global Variables

Variables or parameters defined inside a function are
called local variables as their scope is limited to the
function only. On the contrary, Global variables are
defined outside of the function.

Local variables can’t be used outside the function
whereas a global variable can be used throughout the
program anywhere as per requirement.

The lifetime of a local variable ends with the
termination or the execution of a function, whereas the
lifetime of a global variable ends with the termination
of the entire program.

The variable defined inside a function can also be made
global by using the global statement.

Function with Parameters

It is possible to define a function to receive one or more
parameters (also called arguments) and use them for
processing inside the function block.
Parameters/arguments should be given suitable formal
names. The SayHello() function is now defined to receive a
string parameter called name. Inside the function, print()
statement is modified to display the greeting message
addressed to the received parameter.

Example: Parameterized Function
def SayHello(name):
print ("Hello {}!.".format(name))
return
You can call the above function as shown below.

>>> SayHello("Gandhi")
Hello Gandhi!

TYPES OF ARGUMENTS

}QRGUMENTS'

I DEFAULT l IKEYWORDl I VARIABLE l IREQUIRED

DEFAULT ARGUMENTS

m Default arguments are those that take a default value
if no argument value is passed during the function
call. You can assign this default value by with the
assignment operator =, just like in the following

example:

Function definition is here
def printinfo(name, age = 35):

“This prints a passed info into this function”

print ("Name: ", name)
print ("Age “, age)
return;

Now you can call printinfo function
printinfo(age=50, name="miki")
printinfo(name="miki")

Common Programming Errors

Using a non-default argument after
default arguments raise a Syntax Error.
In Python functions, a default
argument can only be followed by a
default argument. Non-default
arguments must be placed before
default arguments.

" J
‘keyword arguments

m |f you have some functions with many parameters and you want to
specify only some parameters, then you can give values for such
parameters by naming them this is called keyword arguments.

m \We use the name instead of the position which we have been using
all along.

m This has two advantages - One, using the function is easier since
we do not need to worry about the order of the arguments.

m [wo, we can give values to only those parameters which we want,
provided that the other parameters have default argument values.

#!/usr/bin/python

Filename : func_key.py Output

def func(a, b=3, c=10): ais3andbis7andcis 10
print'ais’,a,'and b is', b, 'and cis’, ¢ ais?25andbis 5andcis 24

ais 100 andbis S and cis 50
func(3, 7)
func(25, c=24)
func(c=50, a=100)

" S
Required arguments

m Required arguments are the arguments passed to a
function in correct positional order. Here the number of

arguments in the function call should match exactly with
the function definition.

m [o call the function printme() you definitely need to pass
one argument otherwise it would give a syntax error

def printme(str):
"This prints a passed string into this function”
print (str)
return;

Now you can call printme function
printme()
When the above code is executed, it produces the following result -

Traceback (most recent call last):
File "test.py", line 11, in <module>
printme();
TypeError: printme() takes exactly 1 argument (0 given)

> def result(m1,m2,m3):
ttl=m1+m2+m3
percent=ttl/3
if percent>=50:

print ("Result: Pass”)
else:

print ("Result: Fail")
return

p=int(input("Enter your marks in physics: "))
c=int(input("Enter your marks in chemistry: “))
m=int(input("Enter your marks in maths: "))

— result(p,c,m)

VARIABLE Arguments/
Arbitrary Arguments

m You may not always know how many arguments you’ll get. In
that case, you use an asterisk(*) before an argument name.

m >>> def sayhello(*names):
for name in names:
print("Hello, {name}")

m And then when you call the function with a number of
arguments, they get wrapped into a Python tuple. We iterate
over them using the for loop in python.

>>> sayhello('Ayushi’,’Aryan’,’Megha’)
Output:

Hello, Ayushi
Hello, Aryan
Hello, Megha

])
S
return statement

m [he return statement is used to return from a function i.e. break out

of the function. We can optionally return a value from the function as
well.

m Every function implicitly contains a refurn None statement. You can

see this by running print someFunction() where the function
someFunction does not use the return statement

#!/usr/bin/python
Filename : return.py
Output def someFunction():
def max(x, y): pass
if x> y: 3
return x The pass Statement is used in Python fo indicate an emply block of statements.

else:
return y

print(max(2, 3))

oM
Pass by reference vs value

All parameters (arguments) in the Python language are
passed by reference. It means if you change what a

parameter refers to within a function, the change also
reflects back in the calling function.

def changeme(mylist):
"This changes a passed list into this function”
mylist.append([1,2,3,4]);
print ("Values inside the function: ", mylist)
return

Now you can call changeme function
mylist = [10,20,30];

changeme(mylist);

print ("Values outside the function: ", mylist)

Values inside the function: [10, 20, 30, [1, 2, 3, 4]]
Values outside the function: [10, 20, 30, [1, 2, 3, 4]]

v JE——

'Function example

m [here is one more example where argument is
being passed by reference but Iinside the
function, but the reference is being over-written.

#!/usr/bin/python

Function definition 1s here
def changeme (mylist):

-

1011S Chal

iges a passed list into this function"

mylist = [1,2,3,4]; # This would assig new reference in mylist
print "Values inside the function: ", mylist

return

Now you can call changeme function
mylist = [10,20,30];

changeme (mylist);
prlnt Q.-i'_:l ues out

ntside the function: *, mylist)
Output

Values inside the function:
Values outside the function:

[ll 2' 3I 4]
(10, 20, 30]

"
The Anonymous Functions

m You can use the lambda keyword to create small anonymous functions. These
functions are called anonymous because they are not declared in the standard
manner by using the def keyword.

m Lambda forms can take any number of arguments but return just one value in
the form of an expression. They cannot contain commands or multiple
expressions.

m An anonymous function cannot be a direct call to print because lambda requires
an expression.

m [Lambda functions have their own local namespace and cannot access variables
other than those in their parameter list and those in the global namespace.

>>>sum = lambda X, y,z: x+y + z

>>>sum(5, 10, 15)

30

The expression does not need to always return a value. It can be
void.

>>>disp = lambda str: print('Output: ' + str)

>>>disp("Hello World!")

Output: Hello World!

ASSESSMENT

Click on the link given below and attempt the
quiz.

https://forms.gle/nRbf2B2C8CKRLJM37

